Publications

Linking exposures of particles released from nano-enabled products to toxicology: An integrated methodology for particle sampling, extraction, dispersion and dosing
Nano-enabled products (NEPs) represent a growing economic global market that integrates nanotechnology into our everyday lives. Increased consumer use and disposal of NEPs at their end of life has led to increased environmental, health and safety (EHS) concerns, due to the potential environmental release of constituent engineered nanomaterials (ENMs) used in the production of NEPs. Although, there is an urgent need to assess particulate matter (PM) release scenarios and potential EHS implications, no current standardized methodologies exist across the exposure-toxicological characterization continuum. Here, an integrated methodology is presented, that can be used to sample, extract, disperse and estimate relevant dose of life cycle-released PM (LCPM), for in vitro and in vivo toxicological studies. The proposed methodology was utilized to evaluate two “real world” LCPM systems simulating consumer use and disposal of NEPs. This multi-step integrated methodology consists of: (1) real-time monitoring and sampling of size fractionated LCPM; (2) efficient extraction of LCPM collected on substrates using aqueous or ethanol extraction protocols to ensure minimal physicochemical alterations; (3) optimized LCPM dispersion preparation and characterization; (4) use of dosimetric techniques for in vitro and in vivo toxicological studies. This comprehensive framework provides a standardized protocol to assess the release and toxicological implications of ENMs released across the life cycle of NEPs and will help in addressing important knowledge gaps in the field of nanotoxicology.
Cells
2021-07-23
Blood manufacturing methods affect red blood cell product characteristics and immunomodulatory activity
Transfusion of red cell concentrates (RCCs) is associated with increased risk of adverse outcomes that may be affected by different blood manufacturing methods and the presence of extracellular vesicles (EVs). We investigated the effect of different manufacturing methods on hemolysis, residual cells, cell-derived EVs, and immunomodulatory effects on monocyte activity. Thirty-two RCC units produced using whole blood filtration (WBF), red cell filtration (RCF), apheresis-derived (AD), and whole blood–derived (WBD) methods were examined (n = 8 per method). Residual platelet and white blood cells (WBCs) and the concentration, cell of origin, and characterization of EVs in RCC supernatants were assessed in fresh and stored supernatants. Immunomodulatory activity of RCC supernatants was assessed by quantifying monocyte cytokine production capacity in an in vitro transfusion model. RCF units yielded the lowest number of platelet and WBC-derived EVs, whereas the highest number of platelet EVs was in AD (day 5) and in WBD (day 42). The number of small EVs (<200 nm) was greater than large EVs (≥200 nm) in all tested supernatants, and the highest level of small EVs were in AD units. Immunomodulatory activity was mixed, with evidence of both inflammatory and immunosuppressive effects. Monocytes produced more inflammatory interleukin-8 after exposure to fresh WBF or expired WBD supernatants. Exposure to supernatants from AD and WBD RCC suppressed monocyte lipopolysaccharide-induced cytokine production. Manufacturing methods significantly affect RCC unit EV characteristics and are associated with an immunomodulatory effect of RCC supernatants, which may affect the quality and safety of RCCs.
Cells
2021-07-23
Peptide Nanocarriers for the Detection of Heavy Metal Ions Using Resistive Pulse Sensing
The use of nanocarriers within resistive pulse sensing facilitates the detection and quantification of analytes. To date the field has been dominated by polyionic carriers or nanomaterials. Together they combine the recognition elements of a ligand with a stable support, facilitating the sample handling, analysis times, and multiplex detection. Here we develop the use of peptide-functionalized superparamagnetic nanocarriers to extract and quantify metal ions in solution. The interaction between nickel and the peptide ligand is measured as a change in translocation velocity of the carrier. The magnitude of change is proportional to the concentration of the metal ions in solution. Unlike DNA aptamers where a change in the tertiary structure and the folding of the polyanionic backbone influences the carrier velocity, the peptides here had a lower net charge under the assay conditions. To try and enhance the signal we engineered charged groups within the peptide to explore the effects on the signal. In all cases the metal ion binding dominated the velocity of the carrier. The assay was shown to work across 3 orders of magnitude and can detect Ni2+ in the presence of some other heavy metal ions. We demonstrate this by quantifying Ni2+ in both tap and pond water. The work allows for future multiplexed sensing strategies using both peptides and DNA aptamers in resistive pulse sensors.”
Bio diagnostics
2021-07-23
Vibration-assisted optical injection of a single fluorescent sensor into a target cell
In this paper, we propose the selective adhesion and rapid injection of a fluorescent sensor into a target cell via the optical control of zeta potential and local vibration stimulus using optical tweezers. A multi-fluorescent sensor, which can respond to both temperature and pH, was encapsulated in anionic lipid layers containing a photochromic material (spiropyran) via the layer-by-layer method. The zeta potential of the lipid layers containing spiropyran was adjusted from negative to positive by photo-isomerization of spiropyran using UV illumination. A single sensor was manipulated by optical tweezers and transferred to a cell surface, thereafter adhering selectively to the cell surface under UV illumination without excess sensor adhesion. We then drove the focal point of the optical tweezers to move up and down circularly near the sensor, mimicking a vibration on the sensor or rapid injection. The surface zeta potential of the liposome layers was measured using a zeta potential analyzer. The fluorescence resonance energy transfer (FRET) method was used to observe the changes in contact area between the adhered sensor and cell membrane before and after vibration. Holographic optical tweezers (HOT) and laser confocal microscopy were used to manipulate the single sensor and to capture fluorescent images. The results showed that the vibration applied on the sensor could push down the sensor, inducing a downward displacement. This displacement caused a corresponding deformation of the cell membrane, which increased the contact area between the sensor and the cell membrane. Without vibration, the sensor was injected into the cytoplasm in 5 h at an injection rate of 40%. By applying the vibration stimulus, we succeeded in the rapid injection of the sensor in 30 min at an injection rate of 80%.
Cells
2021-07-23
Control of Acoustic Cavitation for Efficient Sonoporation with Phase-Shift Nanoemulsions
Acoustic cavitation can be used to temporarily disrupt cell membranes for intracellular delivery of large biomolecules. Termed sonoporation, the ability of this technique for efficient intracellular delivery (i.e., >50% of initial cell population showing uptake) while maintaining cell viability (i.e., >50% of initial cell population viable) has proven to be very difficult. Here, we report that phase-shift nanoemulsions (PSNEs) function as inertial cavitation nuclei for improvement of sonoporation efficiency. The interplay between ultrasound frequency, resultant microbubble dynamics and sonoporation efficiency was investigated experimentally. Acoustic emissions from individual microbubbles nucleated from PSNEs were captured using a broadband passive cavitation detector during and after acoustic droplet vaporization with short pulses of ultrasound at 1, 2.5 and 5 MHz. Time domain features of the passive cavitation detector signals were analyzed to estimate the maximum size (Rmax) of the microbubbles using the Rayleigh collapse model. These results were then applied to sonoporation experiments to test if uptake efficiency is dependent on maximum microbubble size before inertial collapse. Results indicated that at the acoustic droplet vaporization threshold, Rmax was approximately 61.7 ± 5.2, 24.9 ± 2.8, and 12.4 ± 2.1 μm at 1, 2.5 and 5 MHz, respectively. Sonoporation efficiency increased at higher frequencies, with efficiencies of 39.5 ± 13.7%, 46.6 ± 3.28% and 66.8 ± 5.5% at 1, 2.5 and 5 MHz, respectively. Excessive cellular damage was seen at lower frequencies because of the erosive effects of highly energetic inertial cavitation. These results highlight the importance of acoustic cavitation control in determining the outcome of sonoporation experiments. In addition, PSNEs may serve as tailorable inertial cavitation nuclei for other therapeutic ultrasound applications.
Bio diagnostics
2021-07-23
Conception of nanosized hybrid liposome/poloxamer particles to thicken the interior core of liposomes and delay hydrophilic drug delivery
Liposomes are nanocarriers composed of phospholipids, especially designed to potentially carry drugs. However, liposomes suffer in terms of leakage of small hydrophilic drugs. To control the release, a system with lipid shell and polymeric viscous core, namely Hybrid liposome/polymer inside (HLPin), has been designed. For this purpose, we setup a syringe pump apparatus equipped with homemade tubing system. HLPin formulation consisting of poloxamer (5% w/v) was found to be optimal when produced at injection rates of 5 mL.min−1. Then, we tend to characterize the HLPin with DLS, TEM, TRPS, thermal analysis and densitometry in comparison with a polymer added after formation of the liposomes. The optimal formulation was evaluated for its stability and cytotoxicity. The selected conditions and composition resulted in nanocarriers which are highly reproducible with mono-disperse size distribution with an average size of 206 ± 4.8 nm and a polydispersity index of 0.15 ± 0.015. Densitometry and thermal analysis results confirmed the formation of HLPin. Interestingly, HLPin were stable over 2 months, produced no cytotoxicity and exhibited slow release of rhodamine and Doxorubicin in comparison to liposome formulation. Our homemade tubing system coupled with syringe pump apparatus achieved reproducible, precisely controlled production for the HLPin formulation which can be scale up.
Drug Delivery and Vaccines
2021-07-23
Enhanced Osteogenic Differentiation of Human Mesenchymal Stem Cells Using Microbubbles and Low Intensity Pulsed Ultrasound on 3D Printed Scaffolds
Lipid‐coated microbubbles, clinically approved as contrast enhancing agents for ultrasound imaging, are investigated for the first time for their possible applications in bone tissue engineering. Effects of microbubbles (average diameter 1.1 µm) coated by a mixture of lipids (1,2‐dipalmitoyl‐sn‐glycero‐3‐phosphocholine, 1,2‐dipalmitoyl‐sn‐glycero‐3‐phosphoethanolamine‐N‐[methoxy(polyethylene glycol)‐2000], and 1,2‐dipalmitoyl‐3‐trimethylmmonium‐propane) in the presence of low intensity pulsed ultrasound (LIPUS) on human mesenchymal stem cells seeded on 3D printed poly(lactic acid) porous scaffolds are investigated. LIPUS stimulation (30 mW cm−2, 1.5 MHz, 20% duty cycle) for 3 min a day with 0.5% v/v microbubbles results in a significant increase in proliferation (up to 19.3%) when compared to control after 1, 3, and 5 d. A 3‐week osteogenic differentiation study shows a significant increase in total protein content (up to 27.5%), calcium deposition (up to 4.3%), and alkaline phosphatase activity (up to 43.1%) initiated by LIPUS with and without the presence of microbubbles. The microbubbles are found to remain stable during exposure, and their sustained oscillations demonstrably help focus the LIPUS energy toward enhanced cellular response. Integrating LIPUS and microbubbles promises to be a novel and effective strategy for bone tissue engineering and regeneration therapies.
Micro and Nano Bubbles
2021-07-23
Modification of casein aggregate microstructures under frozen conditions: a study using tunable resistive pulse sensing
Freezing and aging under frozen conditions could be a potential technique for modifying characteristics of aggregated sodium caseinate particles. In this research, 1% sodium caseinate suspensions with different NaCl concentrations (0.1 M and 0.01 M) and pH (5.5 and 8.0) were frozen at −35 °C for 1 h, 2 days, or 5 days. After thawing, the suspensions were analyzed by a tunable resistive pulse sensing device. Particle diameter was significantly larger in suspensions with 0.1 M NaCl than suspensions with 0.01 M NaCl. Particle diameter of the samples decreased during the 1st hour of freezing, then gradually increased up to the 2nd and 5th day of the freezing process. In contrast, particle number concentration of most samples increased after 1 h of freezing and decreased up to the 2nd and 5th day of the freezing process. After being frozen, surface characteristics of the casein aggregates changed, most notably in the solution with pH 5.5 and NaCl concentration of 0.01 M. It was found that different aging temperatures (−5, −20, and −35 °C) had similar effects on particle diameter and particle number concentration, but had different effects on the change in surface characteristics. Based on these results, characteristics of different sodium caseinate suspensions could be strategically modified by using freezing and aging technique.
Nanoparticles
2021-07-23
Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19
Long non-coding RNAs (lncRNAs) are involved in the pathology of various tumors, including colorectal cancer (CRC). The crosstalk between carcinoma- associated fibroblasts (CAFs) and cancer cells in the tumor microenvironment promotes tumor development and confers chemoresistance. In this study, we further investigated the underlying tumor-promoting roles of CAFs and the molecular mediators involved in these processes. Methods: The AOM/DSS-induced colitis-associated cancer (CAC) mouse model was established, and RNA sequencing was performed. Small interfering RNA (siRNA) sequences were used to knock down H19. Cell apoptosis was measured by flow cytometry. SW480 cells with H19 stably knocked down were used to establish a xenograft model. The indicated protein levels in xenograft tumor tissues were confirmed by immunohistochemistry assay, and cell apoptosis was analyzed by TUNEL apoptosis assay. RNA-FISH and immunofluorescence assays were performed to assess the expression of H19 in tumor stroma and cancer nests. The AldeRed ALDH detection assay was performed to detect intracellular aldehyde dehydrogenase (ALDH) enzyme activity. Isolated exosomes were identified by transmission electron microscopy, nanoparticle tracking and Western blotting. Results: H19 was highly expressed in the tumor tissues of CAC mice compared with the expression in normal colon tissues. The up-regulation of H19 was also confirmed in CRC patient samples at different tumor node metastasis (TNM) stages. Moreover, H19 was associated with the stemness of colorectal cancer stem cells (CSCs) in CRC specimens. H19 promoted the stemness of CSCs and increased the frequency of tumor-initiating cells. RNA-FISH showed higher expression of H19 in tumor stroma than in cancer nests. Of note, H19 was enriched in CAF-derived conditioned medium and exosomes, which in turn promoted the stemness of CSCs and the chemoresistance of CRC cells in vitro and in vivo. Furthermore, H19 activated theβ-catenin pathway via acting as a competing endogenous RNA sponge for miR-141 in CRC, while miR-141 significantly inhibited the stemness of CRC cells. Conclusion: CAFs promote the stemness and chemoresistance of CRC by transferring exosomal H19. H19 activated the β-catenin pathway via acting as a competing endogenous RNA sponge for miR-141, while miR-141 inhibited the stemness of CRC cells. Our findings indicate that H19 expressed by CAFs of the colorectal tumor stroma contributes to tumor development and chemoresistance. Keywords: H19, CRC, CAFs, stemness, chemoresistance
Theranostics
2021-07-23
Oral keratinocyte-derived exosomes regulate proliferation of fibroblasts and epithelial cells
Extracellular vesicles (EVs), including exosomes, are small membrane-bound particles released by cells. From a therapeutic point of view, EVs can often convey similar biological function as their parent cell. Grafts originating from oral mucosa have frequently been used in regenerative medicine, and we have previously described the use of oral cell sheets to prevent stricture formation of the esophagus. Further, we recently found that exosomes derived from these cell sheets have pro-regenerative effect on skin wound healing. Here, we have isolated exosomes from conditioned media from oral keratinocyte (“OKEx”) and dermal fibroblast (“FEx”) cultures. The exosomes were probed for classical EV-markers by western blot (CD9, annexin V and Flotillin-1), FEx were positive for all markers while OKEx were positive only for CD9. Tunable resistive pulse sensing indicated a mean size of around 110 nm and transmission electron microscopy showed a spherical morphology, for both groups. After fluorescent labelling, we studied the uptake of exosomes co-cultured with fibroblasts or keratinocytes. Signal from OKEx could be detected after 90 min, and signal could be detected in all groups after 16 h. Finally we studied the exosomes’ modulation of cell proliferation. Both groups suppressed proliferation of healthy keratinocyte and fibroblasts, at some doses to similar levels as dexamethasone (a drug commonly used to prevent stricture formation). In contrast, the exosomes also suppressed the proliferation of the carcinoma cell line TR146, while dexamethasone had no effect. In conclusion, we believe that exosome-signaling might be one of the mode-of-actions of cell sheet-therapy for stricture prevention.
TRPS Technology
2021-07-23
Exosomes derived from clinical grade oral mucosal epithelial cell sheets promote wound healing
The oral mucosa exhibits unique regenerative properties, sometimes referred to as foetal-like wound healing. Researchers from our institute have used sheets of oral mucosa epithelial cells (OMECs) for regenerative medicine applications including cornea replacement and oesophageal epithelial regeneration for stricture prevention. Here, we have isolated exosomes from clinical-grade production of OMEC sheets from healthy human donors (n = 8), aiming to evaluate the clinical potential of the exosomes to stimulate epithelial regeneration and to improve understanding of the mode-of-action of the cells. Exosomes were isolated from conditioned (cExo) and non-conditioned (ncExo) media. Characterization was performed using Western blot for common exosomal-markers: CD9 and flotillin were positive while annexin V, EpCam and contaminating marker GRP94 were negative. Nanoparticle tracking analysis revealed a diameter of ~120 nm and transmission electron microscopy showed a corresponding size and spherical appearance. Human skin fibroblasts exposed to exosomes showed dose-dependent reduction of proliferation and a considerable increase of growth factor gene expression (HGF, VEGFA, FGF2 and CTGF). The results were similar for both groups, but with a trend towards a larger effect from cExo. To study adhesion, fluorescently labelled exosomes were topically applied to pig oesophageal wound-beds ex vivo and subsequently washed. Positive signal could be detected after as little as 1 min of adhesion, but increased adhesion time produced a stronger signal. Next, labelled exosomes were added to full-thickness skin wounds in rats and signal was detected up to 5 days after application. cExo significantly reduced the wound size at days 6 and 17. In conclusion, exosomes from OMEC sheets showed pro-regenerative effects on skin wound healing. This is the first time that the healing capacity of the oral mucosa is studied from an exosome perspective. These findings might lead to a combinational therapy of cell sheets and exosomes for future patients with early oesophageal cancer. Keywords: Extracellular vesicles, exosomes, wound healing, oral keratinocytes, clinical samples, therapy, regenerative medicine
TRPS Technology
2021-07-23
Extracellular Vesicles: Recent Developments in Technology and Perspectives for Cancer Liquid Biopsy
Extracellular micro- and nanoscale membrane vesicles produced by different cells progressively attract the attention of the scientific community. They function as mediators of intercellular communication and transport genetic material and signaling molecules between the cells. In the context of keeping homeostasis, the extracellular vesicles contribute to the regulation of various systemic and local processes. Vesicles released by the tumor and activated stromal cells exhibit multiple functions including support of tumor growth, preparation of the pre-metastatic niches, and immune suppression. Considerable progress has been made regarding the criteria of classification of the vesicles according to their origin, content, and function: Exosomes, microvesicles, also referred to as microparticles or ectosomes, and large oncosomes were defined as actively released vesicles. Additionally, apoptotic bodies represented by a highly heterogeneous population of particles produced during apoptosis, the programmed cell death, should be considered. Because the majority of isolation techniques do not allow the separation of different types of vesicles, a joined term “extracellular vesicles” (EVs) was recommended by the ISEV community for the definition of vesicles isolated from either the cell culture supernatants or the body fluids. Because EV content reflects the content of the cell of origin, multiple studies on EVs from body fluids in the context of cancer diagnosis, prediction, and prognosis were performed, actively supporting their high potential as a biomarker source. Here, we review the leading achievements in EV analysis from body fluids, defined as EV-based liquid biopsy, and provide an overview of the main EV constituents: EV surface proteins, intravesicular soluble proteins, EV RNA including mRNA and miRNA, and EV DNA as potential biomarkers. Furthermore, we discuss recent developments in technology for quantitative EV analysis in the clinical setting and future perspectives toward miniaturized high-precision liquid biopsy approaches.
Vesicles
2021-07-23
Techniques Associated with Exosome Isolation for Biomarker Development: Liquid Biopsies for Ovarian Cancer Detection
Ovarian cancer is the leading gynecological malignancy worldwide. This is attributed to the fact that the disease is often diagnosed at an advanced stage, where the survival rates drop from approximately 90% (detection at an early stage) to 20%. Furthermore, ovarian cancer is not associated with overt physical symptoms. Thus, there is an urgent need for a highly sensitive and minimally invasive biomarker for the early detection of ovarian cancer. However, this continues to remain an unmet clinical need, as several proposed techniques have shown low sensitivity and specificity, with poor positive and negative predictive values. The quest for an ideal biomarker has bought exosomes to the forefront. Exosomes are small extracellular vesicles of an endocytic origin, which can encapsulate genetic information, in the form of proteins and miRNAs. They are released by multiple cell types and are involved in intercellular communication, through the transfer of their cargo. The process of exosome biogenesis allows for the packaging of molecules from both membranous and cytosolic origins. Therefore, exosomes are representations of the releasing cell, and thus provide an insight into the cellular environment. Furthermore, exosomal encapsulation of molecules such as proteins and miRNAs can prevent degradation, making exosomes an ideal biomarker source. Thus, this chapter provides an overview of ovarian cancer, the potential of exosomes as an early detection biomarker, and the different methods associated with the isolation of different vesicle subpopulations, and exosome enrichment.
Vesicles
2021-07-23
Biophysical virus particle specific characterization to sharpen the definition of virus stability
Vaccine thermostability is key to successful global immunization programs as it may have a significant impact on the continuous cold-chain maintenance logistics, as well as affect vaccine potency. Modern biological and biophysical techniques were combined to in-depth characterize the thermostability of a formulated rabies virus (RABV) in terms of antigenic and genomic titer, virus particle count and aggregation state. Tunable resistive pulse sensing (TRPS) and nanoparticle tracking analysis (NTA) were used to count virus particles while simultaneously determining their size distribution. RABV antigenicity was assessed by NTA using a monoclonal antibody that recognize a rabies glycoprotein (G protein) conformational epitope, enabling to specifically count antigenic rabies viruses. Agreement between antigenicity results from NTA and conventional method, as ELISA, was demonstrated. Additionally, NTA and ELISA showed mirrored loss of RABV antigenicity during forced degradation studies performed between 5 °C and 45 °C temperature exposure for one month. Concomitant with decreased antigenicity, emergence of RABV particle populations larger than those expected for rabies family viruses was observed, suggesting RABV aggregation induced by thermal stress. Finally, using a kinetic-based modeling approach to explore forced degradation antigenicity data (NTA, ELISA), a two-step model accurately describing antigenicity loss was identified. This model predicted a RABV shelf-life of more than 3 years at 5 °C; significant loss of antigenicity was predicted for samples maintained several months at ambient temperature. This thorough characterization of RABV forced degradation study originally provided a time-temperature mapping of RABV stability.
Viruses and Bacteria
2021-07-23
Budesonide, fluticasone propionate, and azithromycin do not modulate the membrane vesicle release by THP-1 macrophages and respiratory pathogens during macrophage infection
Patients with more severe chronic obstructive pulmonary disease frequently experience exacerbations and it is estimated that up to 50% of these exacerbations are associated with bacterial infections. The mainstay treatment for these infection-related exacerbations constitutes the administration of glucocorticoids, alone or in combination with antibiotics. A recent line of evidence demonstrates that many hormones including the steroid beclomethasone can also directly affect bacterial growth, virulence, and antibiotic resistance. The effect of these regimens on the release of potentially virulent and toxic membrane vesicles (MVs) is at present unclear. In this study, we determined the effect of several pharmacological agents on MVs release by and bacterial growth of common respiratory pathogens. We found that neither the release of MVs nor the bacterial growth was affected by the glucocorticoids budesonide and fluticasone. The macrolide antibiotic azithromycin only inhibited the growth of Moraxella catarrhalis but no effects were observed on bacterial MV release at a concentration that is achieved locally in the epithelial lining on administration. The macrophage pro-inflammatory response to MVs was significantly reduced after treatment with budesonide and fluticasone but not by azithromycin treatment. Our findings suggest that these glucocorticoids may have a positive effect on infection-related inflammation although the bacterial growth and MV release remained unaffected.
Viruses and Bacteria
2021-07-23
Perfluorocarbon nanodroplets stabilized by fluorinated surfactants: characterization and potentiality as theranostic agent
We aim to produce emulsions that can act as contrast agents and drug carriers for cancer imaging and therapy. To increase tumor detection and decrease drug side effects, it is desirable to take advantage of the enhanced permeability and retention effect that allows nanoparticles to accumulate in tumor tissues. To do so, the emulsion droplets need to be small enough and stable over time in addition to enhancing image contrast and carrying a drug payload. In the present study, we have investigated the properties and potentiality as theranostic agents of perfluorocarbon emulsions stabilized by a biocompatible fluorinated surfactant called FTAC. To obtain better control of our system, the synthesis of those surfactants was studied and their physico-chemical properties were explored in different configurations such as micelles, in the perfluorocarbon droplet shell and at water/air and water/perfluorocarbon interfaces. The originality of this work lies in the determination of numerous characteristics of emulsions and fluorinated surfactants including surface tension, interfacial tension, critical micelle concentration, adiabatic compressibility, density, size distribution (aging studies), and ultrasonic echogenicity. These characterization studies were conducted using different types of FTAC and several perfluorocarbons (perfluoropentane, perfluorohexane, and perfluorooctyl bromide). We have also shown that a hydrophobic drug could be encapsulated in the FTAC-stabilized perfluorocarbon droplets thanks to triacetin addition. Finally, the perfluorocarbon emulsions were detectable in vitro by a clinical 3 T MRI scanner, equipped with a double frequency 19F/1H transmit–receive coil.
Micro and Nano Bubbles
2021-07-23
Bioinspired protein microparticles fabrication by peptide mediated disulfide interchange
In this article, we report an innovative green chemistry approach for the fabrication of protein microparticles based on peptide mediated disulfide interchange reactions. The concept is based on using a redox reactive peptide, glutathione, as a natural crosslink reagent triggering the formation of intermolecular disulfide bonds between adjacent protein molecules leading to the assembly of protein molecules within a CaCO3?template into a microparticle structure. The CaCO3?template is highly biocompatible and is completely removed by simply adjusting the solution to pH 5.0, leaving behind the pure protein microparticles. Moreover, the GSH is only involved in the intermediate step without being incorporated into the resulting protein microparticles, therefore producing protein microparticles composed of purely protein molecules. This technology provides a simple and robust method to fabricate protein microparticles under physiological aqueous conditions, and more importantly avoiding the extensive use of synthetic chemical crosslinking reagents. We have further demonstrated that this method is versatile to fabricate microparticles with various proteins such as BSA, enzymes and antibodies. The biological functions such as catalytic properties and affinity interactions of the resulting protein microparticles are highly conserved which demonstrate the potential applications of the protein microparticles in the area of biocatalysis, bioseparation and targeted drug delivery.
Micro and Nano Bubbles
2021-07-23
Novel method for the formation of monodisperse superheated perfluorocarbon nanodroplets as activatable ultrasound contrast agents
Microbubble (MB) contrast agents have positively impacted the clinical ultrasound (US) community worldwide. Their use in molecular US imaging applications has been hindered by their limited distribution to the vascular space. Acoustic droplet vaporization (ADV) of nanoscale superheated perfluorocarbon nanodroplets (NDs) demonstrates potential as an extravascular contrast agent that could facilitate US-based molecular theranostic applications. However these agents are metastable and difficult to manufacture with high yields. Here, we report a new formulation technique that yields reliable, narrowly dispersed sub-300 nm decafluorobutane (DFB) or octafluoropropane (OFP)-filled phospholipid-coated NDs that are stable at body temperature, using small volume microfluidization. Final droplet concentration was high for DFB and lower for OFP (>1012 vs. >1010 NDs per mL). Superheated ND stability was quantified using tunable resistive pulse sensing (TRPS) and dynamic light scattering (DLS). DFB NDs were stable for at least 2 hours at body temperature (37 °C) without spontaneous vaporization. These NDs are activatable in vitro when exposed to diagnostic US pressures delivered by a clinical system to become visible microbubbles. The DFB NDs were sufficiently stable to allow their processing into functionalized NDs with anti-epithelial cell adhesion molecule (EpCAM) antibodies to target EpCAM positive cells.
Micro and Nano Bubbles
2021-07-23
In Vivo Evaluation of Magnetic Targeting in Mice Colon Tumors with Ultra-Magnetic Liposomes Monitored by MRI
Purpose: The development of theranostic nanocarriers as an innovative therapy against cancer has been improved by targeting properties in order to optimize the drug delivery to safely achieve its desired therapeutic effect. The aim of this paper is to evaluate the magnetic targeting (MT) efficiency of ultra-magnetic liposomes (UML) into CT26 murine colon tumor by magnetic resonance imaging (MRI). Procedures: Dynamic susceptibility contrast MRI was applied to assess the bloodstream circulation time. A novel semi-quantitative method called %I0.25, based on the intensity distribution in T2*-weighted MRI images was developed to compare the accumulation of T2 contrast agent in tumors with or without MT. To evaluate the efficiency of magnetic targeting, the percentage of pixels under the intensity value I0.25 (I0.25 = 0.25(Imax − Imin)) was calculated on the intensity distribution histogram. Results: This innovative method of processing MRI images showed the MT efficiency by a %I0.25 that was significantly higher in tumors using MT compared to passive accumulation, from 15.3 to 28.6 %. This methodology was validated by ex vivo methods with an iron concentration that is 3-fold higher in tumors using MT. Conclusions: We have developed a method that allows a semi-quantitative evaluation of targeting efficiency in tumors, which could be applied to different T2 contrast agents. Key words: MRI Magnetic targeting Magnetic nanoparticle Liposome Image analysis method Tumor
Drug Delivery and Vaccines
2021-07-23
Novel analytical methods to assess the chemical and physical properties of liposomes
Liposomes are used in commercial pharmaceutical formulations (PFs) and dietary supplements (DSs) as a carrier vehicle to protect the active ingredient from degradation and to increase the half-life of the injectable. Even as the commercialization of liposomal products has rapidly increased, characterization methodologies to evaluate physical and chemical properties of the liposomal products have not been well-established. Herein we develop rapid methodologies to evaluate chemical and selected physical properties of liposomal formulations. Chemical properties of liposomes are determined by their lipid composition. The lipid composition is evaluated by first screening of the lipids present in the sample using HPLC-ELSD followed by HPLC-MSMS analysis with high mass accuracy (<5 ppm), fragmentation pattern and lipid structure databases searching. Physical properties such as particle size and size distribution were investigated using Tunable Resistive Pulse Sensing (TRPS). The developed methods were used to analyze commercially available PFs and DSs. As results, PFs contain distinct number of lipids as indicated by the manufacture, but DSs were more complicated containing a large number of lipids belonging to different sub-classes. Commercially available liposomes have particles with wide size distribution based on size measurements performed by TRPS. The high mass accuracy as well as identification lipids using multiple fragment ions aided to accurately identify the lipids and differentiate them from other lipophilic molecules. The developed analytical methodologies were successfully adapted to measure the physiochemical properties of commercial liposomes.
Drug Delivery and Vaccines
2021-07-23
Identification and characterization of serovar-independent immunogens in Actinobacillus pleuropneumoniae
Despite numerous actions to prevent disease, Actinobacillus pleuropneumoniae (A. pleuropneumoniae) remains a major cause of porcine pleuropneumonia, resulting in economic losses to the swine industry worldwide. In this paper, we describe the utilization of a reverse vaccinology approach for the selection and in vitro testing of serovar-independent A. pleuropneumoniae immunogens. Potential immunogens were identified in the complete genomes of three A. pleuropneumoniae strains belonging to different serovars using the following parameters: predicted outer-membrane subcellular localization; ≤ 1 trans-membrane helices; presence of a signal peptide in the protein sequence; presence in all known A. pleuropneumoniaegenomes; homology with other well characterized factors with relevant data regarding immunogenicity/protective potential. Using this approach, we selected the proteins ApfA and VacJ to be expressed and further characterized, both in silico and in vitro. Additionally, we analysed outer membrane vesicles (OMVs) of A. pleuropneumoniae MIDG2331 as potential immunogens, and compared deletions in degS and nlpI for increasing yields of OMVs compared to the parental strain. Our results indicated that ApfA and VacJ are highly conserved proteins, naturally expressed during infection by all A. pleuropneumoniaeserovars tested. Furthermore, OMVs, ApfA and VacJ were shown to possess a high immunogenic potential in vitro. These findings favour the immunogen selection protocol used, and suggest that OMVs, along with ApfA and VacJ, could represent effective immunogens for the prevention of A. pleuropneumoniae infections in a serovar-independent manner. This hypothesis is nonetheless predictive in nature, and in vivo testing in a relevant animal model will be necessary to verify its validity.
Viruses and Bacteria
2021-07-23
MiR-21 derived from the exosomes of MSCs regulates the death and differentiation of neurons in patients with spinal cord injury
In this study, we aimed to investigate the therapeutic effect of miR-21 in the treatment of spinal cord injury (SCI) as well as its underlying molecular mechanisms. Real-time PCR and western blot were performed to measure the expression of miR-21, PTEN, and PDCD4 in SCI rats. Locomotion recovery assessment, Nissl staining, IHC assay, and TUNEL assay were utilized to observe the therapeutic effect of miR-21 in the treatment of SCI. Bioinformatics analysis and luciferase assay were conducted to establish the signaling pathway of miR-21, PTEN, and PDCD4. The regulatory relationships between miR-21 and PTEN/PDCD4 were further validated by real-time PCR, western blot, MTT assay, and flow cytometry. Compared with sham-operated rats, SCI rats showed decreased expression of miR-21 along with increased expression of PTEN/PDCD4. Exosomes were equally distributed in MSCs transfected with miR-21, PTEN siRNA, or scramble controls. The exosomes isolated from the supernatant of cultured MSCs could improve the functional recovery of SCI rats by reducing SCI-induced neuron loss. In addition, miR-21 was shown to inhibit the expression of PTEN/PDCD4 and suppress neuron cell death. Moreover, PTEN and PDCD4 were validated as virtual targets of miR-21. In addition, the miR-21/PTEN/PDCD4 signaling pathway was shown to enhance cell viability and suppress cell death in vivo. The exosomes collected from the supernatant of transfected MSCs contained miR-21, which could improve the functional recovery of SCI rats and suppress cell death both in vivo and in vitro via the miR-21/PTEN/PDCD4 signaling pathway.
Vesicles
2021-07-23
Circulating exosomes may identify biomarkers for cows at risk for metabolic dysfunction
Disease susceptibility of dairy cows is greatest during the transition from pregnancy to lactation. Circulating exosomes may provide biomarkers to detect at-risk cows to enhance health and productivity. From 490 cows, animals at high- (n = 20) or low-risk (n = 20) of transition-related diseases were identified using plasma non-esterified fatty acid and β-hydroxybutyrate concentrations and liver triacylglyceride concentrations during the two weeks post-calving. We isolated circulating exosomes from plasma of dairy cows at low-risk (LR-EXO) and high-risk (HR-EXO), and analyzed their proteome profiles to determine markers for metabolic dysfunction. We evaluated the effects of these exosomes on eicosanoid pathway expression by bovine endometrial stromal (bCSC) and epithelial (bEEL) cells. HR-EXO had significantly lower yield of circulating exosomes compared with LR-EXO, and unique proteins were identified in HR-EXO and LR-EXO. Exposure to LR-EXO or HR-EXO differentially regulated eicosanoid gene expression and production in bCSC and bEEL cells. In bCSC, LR-EXO exposure increased PGE2 and PGD2 production, whereas HR-EXO exposure increased PTGS2 gene expression. In bEEL, HR-EXO exposure caused a decrease in PGE2, PGF2α, PGD2, PGFM and TXB2 production. The unique presence of serpin A3-7, coiled-coil domain containing 88A and inhibin/activin β A chain in HR-EXO, indicates potential biomarkers for cows at-risk for metabolic diseases. Our results are in line with the health status of the cow indicating a potential diagnostic role for exosomes in enhancing cows’ health and fertility.
Vesicles
2021-07-23
Dietary Na+ intake in healthy humans changes the urine extracellular vesicle prostasin abundance while vesicle excretion rate, NCC and ENaC are not altered
Low Na+ intake activates aldosterone signaling which increases renal Na+ reabsorption through increased apical activity of NaCl co-transporter (NCC) and epithelial Na+ channel (ENaC). Na+ transporter proteins are excreted in urine as integral part of cell-derived extracellular vesicles (uEVs). It was hypothesized that Na+ transport protein levels in uEVs from healthy humans reflect their physiological regulation by aldosterone. Urine and plasma samples from ten healthy males (median age 22.8 years) were collected after five days on low (70 mmol/day) and five days on high (250 mmol/day) Na+ diet. Urine EVs were isolated by ultracentrifugation and analyzed by western blotting for EV markers (CD9, CD63 and ALIX), transport proteins Na+/K+ ATPase α1-subunit, NCC, α- and γ-ENaC subunits, aquaporin-2 and the ENaC cleaving protease prostasin. Plasma renin and aldosterone concentrations increased during low Na+ diet. Urine EV size and concentration was not different between diets by tunable resistive pulse sensing. EV markers ALIX and CD9 increased with low Na+ diet, while CD63 and AQP2 excretion were unchanged. Full-length ENaC γ-subunits were generally not detectable in uEVs, while αENaC, NCC and phosphorylated-NCC were consistently detected, but not changed by Na+ intake. Prostasin increased with low Na+ in uEVs. The uEV excretion of transporters was not correlated to blood pressure, urinary Na+ and K+ excretion, plasma renin or aldosterone. In conclusion, apical Na+ transporter proteins and proteases were excreted in uEVs, and while the excretion rate and size of uEVs were not affected, EV markers and prostasin increased in response to low Na+ diet.”
Vesicles
2021-07-23
The Impact of Nylon-3 Copolymer Composition on the Efficiency of siRNA Delivery to Glioblastoma Cells
Glioblastoma multiforme is a devastating disease that has attracted enormous attention due to poor prognosis and high recurrence. Small interfering RNA (siRNA) in principle offers a promising therapeutic approach by the downregulation of disease-related genes via RNA interference. For efficient siRNA delivery to target sites, cationic polymers are often used in preclinical studies for the protection of siRNA and complex formation based on electrostatic interactions. In an effort to develop biocompatible and efficient nanocarriers with a translational outlook for optimal gene silencing at reduced toxicity, we synthesized two sets of nylon-3 copolymers with variable cationic content (DM or NM monomer) and hydrophobic subunits (CP monomer) and evaluated their suitability for in vitro siRNA delivery into glioblastoma cells. DM0.4/CP0.6 and NM0.4/CP0.6 polymers with similar subunit ratios were synthesized to compare the effect of different cationic subunits. Additionally, we utilized NM0.2/CP0.8 polymers to evaluate the impact of the different hydrophobic content in the polymer chain. The siRNA condensation ability and polymer–siRNA complex stability was evaluated by unmodified and modified SYBR gold assays, respectively. Further physicochemical characteristics, e.g., particle size and surface charge, were evaluated by dynamic light scattering and laser Doppler anemometry, whereas a relatively new method for polyplex size distribution analysis—tunable resistive pulse sensing—was additionally developed and compared to DLS measurements. Transfection efficiencies, the route of cell internalization, and protein knockdown abilities in glioblastoma cells were investigated by flow cytometry. Furthermore, cellular tolerability was evaluated by MTT and LDH assays. All the polymers efficiently condensed siRNA at N/P ratios of three, whereas polymers with NM cationic subunits demonstrated smaller particle size and lower polyplex stability. Furthermore, NM0.2/CP0.8 polyplexes with the highest hydrophobic content displayed significantly higher cellular internalization in comparison to more cationic formulations and successful knockdown capabilities. Detailed investigations of the cellular uptake route demonstrated that these polyplexes mainly follow clathrin-mediated endocytotic uptake mechanisms, implying high interaction capacity with cellular membranes. Taken together with conducive toxicity profiles, highly hydrophobic nylon-3 polymers provide an appropriate siRNA delivery agent for the potential treatment of glioblastoma.
Nanoparticles
2021-07-23
Intracranial Non-thermal Ablation Mediated by Transcranial Focused Ultrasound and Phase-Shift Nanoemulsions
High intensity focused ultrasound (HIFU) mechanical ablation is an emerging technique for non-invasive transcranial surgery. Lesions are created by driving inertial cavitation in tissue, which requires significantly less peak pressure and time-averaged power compared with traditional thermal ablation. The utility of mechanical ablation could be extended to the brain provided the pressure threshold for inertial cavitation can be reduced. In this study, the utility of perfluorobutane (PFB)-based phase-shift nanoemulsions (PSNEs) for lowering the inertial cavitation threshold and enabling focal mechanical ablation in the brain was investigated. We successfully achieved vaporization of PFB-based PSNEs at 1.8 MPa with a 740 kHz focused transducer with a pulsed sonication protocol (duty cycle = 1.5%, 10 min sonication) within intact CD-1 mice brains. Evidence is provided showing that a single bolus injection of PSNEs could be used to initiate and sustain inertial cavitation in cerebrovasculature for at least 10 min. Histologic analysis of brain slices after HIFU exposure revealed ischemic and hemorrhagic lesions with dimensions that were comparable to the focal zone of the transducer. These results suggest that PFB-based PSNEs may be used to significantly reduce the inertial cavitation threshold in the cerebrovasculature and, when combined with transcranial focused ultrasound, enable focal intracranial mechanical ablation.
Nanoparticles
2021-07-23
Nanofiltration to remove microparticles and decrease the thrombogenicity of plasma: in vitro feasibility assessment
Background: As plasma contains procoagulant microparticles (MPs), removing MPs by 75-nm nanofiltration may decrease plasma in vitro thrombogenicity while maintaining the hemostatic activity from coagulation factors. Study design and methods: We defined conditions to nanofilter leukoreduced plasma on a 75-nm hollow-fiber membrane filter. Plasma quality was assessed by coagulation, immunochemical, and electrophoretic assays. MP removal was evaluated by biophysical (flow cytometry, dynamic light scattering, nanoparticle tracking analysis, and tunable resistive pulse sensing) and functional (thrombin generation assay [TGA; Technothrombin], prothrombinase [Zymuphen MP-activity], tissue factor [Zymuphen MP-TF], and procoagulant phospholipid-dependent clotting time [STA-Procoag-PPL] assays) methods. Spiking experiments using platelet MPs were performed to determine extent of removal by nanofiltration. Results: Freshly collected leukoreduced, but not previously frozen, plasma could be readily nanofiltered on a 0.01-m2 75-nm nanofilter under conditions preserving protein and lipoprotein profile, coagulation factor content, and global coagulation activity (prothrombin time, activated partial thromboplastin time). Biophysical methods confirmed an extensive removal of MPs during nanofiltration. All functional assays indicated a marked reduction of plasma in vitro thrombogenicity. There was no thrombin generation in nanofiltered plasma tested by TGA assay with “RC-low phospholipid concentration” reagent, while it was similar to that of starting and leukoreduced plasma samples when using “RC-high phospholipid concentration” reagent. More than 9 log of MPs were removed by nanofiltration. Conclusion: Nanofiltration of 75 nm efficiently removes MPs and decreases in vitro thrombogenicity of plasma without affecting the protein content or the hemostatic activity of coagulation factors. Studies are needed to evaluate the impact of MP removal on in vivo thrombogenic risks and hemostatic efficacy.
Cells
2021-07-23
Measuring particle concentration of multimodal synthetic reference materials and extracellular vesicles with orthogonal techniques: Who is up to the challenge?
The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess their quality, for example, resulting from their production and isolation methods. The community is gradually becoming aware of the need to combine multiple orthogonal techniques to per-form a robust characterization of complex biological samples. Three pillars of critical quality attribute characterization of EVs are sizing, concentration measurement and phenotyping. The repeatable measurement of vesicle concentration is one of the key-challenges that requires further efforts, in order to obtain comparable results by using different techniques and assure reproducibility. In this study, the performance of measuring the concentration of particles in the size range of 50-300 nm with complementary techniques is thoroughly investigated in a step-by step approach of incremental complexity. The six applied techniques include multi-angle dynamic light scattering (MADLS), asymmetric flow field fractionation coupled with multi-angle light scattering (AF4-MALS), centrifugal liquid sedimentation (CLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), and high-sensitivity nanoflow cytometry (nFCM). To achieve comparability, monomodal samples and complex polystyrene mixtures were used as particles of metrological interest, in order to check the suitability of each technique in the size and concentration range of interest, and to develop reliable post-processing data protocols for the analysis. Subsequent complexity was introduced by testing liposomes as validation of the developed approaches with a known sample of physicochemical properties closer to EVs. Finally, the vesicles in EV containing plasma samples were analysed with all the tested techniques. The results presented here aim to shed some light into the requirements for the complex characterization of biological samples, as this is a critical need for quality assurance by the EV and regulatory community. Such efforts go with the view to contribute to both, set-up reproducible and reliable characterization protocols, and comply with the Minimal Information for Studies of Extracellular Vesicles (MISEV) requirements.
Nanoparticles
2021-07-23
Measuring particle size distribution and mass concentration of nanoplastics and microplastics: addressing some analytical challenges in the sub-micron size range
Abstract Hypothesis The implementation of the proposal from the European Chemical Agency (ECHA) to restrict the use of nanoplastics (NP) and microplastics (MP) in consumer products will require reliable methods to perform size and mass-based concentration measurements. Analytical challenges arise at the nanometre to micrometre interface, e.g., 800 nm–10 µm, where techniques applicable at the nanometre scale reach their upper limit of applicability and approaches applicable at the micrometre scale must be pushed to their lower limits of detection. Experiments Herein, we compared the performances of nine analytical techniques by measuring the particle size distribution and mass-based concentration of polystyrene mixtures containing both nano and microparticles, with the educational aim to underline applicability and limitations of each technique. Findings Light scattering-based measurements do not have the resolution to distinguish multiple populations in polydisperse samples. Nanoparticle tracking analysis (NTA), nano-flowcytometry (nFCM) and asymmetric flow field flow fractionation hyphenated with multiangle light scattering (AF4-MALS) cannot measure particles in the micrometre range. Static light scattering (SLS) is not able to accurately detect particles below 200 nm, and similarly to transmission electron microscopy (TEM) and flow cytometry (FCM), is not suitable for accurate mass-based concentration measurements. Alternatives for high-resolution sizing and concentration measurements in the size range between 60 nm and 5 µm are tunable resistive pulse sensing (TRPS) and centrifugal liquid sedimentation (CLS), that can bridge the gap between the nanometre and micrometre range.
Nanoparticles
2021-07-23