MSC-Derived Extracellular Vesicles Activate Mitophagy to Alleviate Renal Ischemia/Reperfusion Injury via the miR-223-3p/NLRP3 Axis

Extracellular Vesicles

Background: MSC-derived extracellular vehicles (EVs) exhibit a protective functional role in renal ischemia/reperfusion injury (RIRI). Recent studies have revealed that mitophagy could be a potential target process in the treatment of RIRI. However, whether MSC-derived EVs are involved in the regulation of mitophagy in RIRI remains largely unknown to date. Methods: RIRI model was established in vivo in mice by subjecting them to renal ischemia/reperfusion. TCMK-1 cells were subjected to hypoxia/reoxygenation (H/R) stimulation to mimic RIRI in vitro. BMSCs and BMSC-derived EVs were isolated and identified. Renal injury was assessed using H&E staining. The qPCR and western blot analyses were conducted to detect the mRNA and protein levels. Apoptosis was evaluated using the TUNEL assay and flow cytometry analysis. The EVs, autophagosomes, and mitochondria were observed using TEM. The colocalization of autophagosomes with mitochondria was confirmed through the confocal assay. The direct binding of miR-223-3p to NLRP3 was validated through the dual-luciferase assay. Results: BMSCs and BMSC-derived EVs were successfully isolated from mice and identified. The protective effect of BMSC-derived EVs against RIRI was validated both in vitro and in vivo, which was indicated by a decrease in apoptosis and inflammasome activation and an increase in mitophagy. However, this protective effect was impaired in the miR-223-3p-depleted EVs, suggesting that miR-223-3p mediated this protective effect. Further mechanistic investigation revealed that miR-223-3p suppressed inflammasome activation to enhance mitophagy by directly targeting NLRP3. Conclusion: In conclusion, the protective role of BMSC-derived EVs and exosome-delivered miR-223-3p in RIRI was validated. Exogenous miR-223-3p directly targeted NLRP3 to attenuate inflammasome activation, thereby promoting mitophagy.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

No items found.
No items found.
No items found.