Circulating Extracellular Vesicle Cargo as Bioinformants of ‘at-risk’Carotid Artery Stenosis.

Extracellular Vesicles
/References

Raju, Sneha, Dakota Gustafson, Kamalben Prajapati, Natalie J. Galant, Steven R. Botts, Giuseppe Papia, Jason E. Fish, and Kathryn L. Howe. "Circulating Extracellular Vesicle Cargo as Bioinformants of ‘at-risk’Carotid Artery Stenosis." Journal of Vascular Surgery 74, no. 3 (2021): e237-e238.

Objectives Carotid artery atherosclerosis is a major cause of ischemic stroke. Managing patients with asymptomatic disease remains challenging, given the lack of reliable tests to identify the subgroup of patients prone to plaque progression and stroke. Given the functional and diagnostic roles of extracellular vesicle (EV) contents, we hypothesized that plasma EV-derived microRNA (miRNA) differs between symptomatic and asymptomatic patients. Methods EVs were isolated via serial centrifugation followed by enrichment using size exclusion chromatography (SEC) (qEVoriginal columns 70 nm; Izon Science Ltd). EV isolation was confirmed according to MISEV 2018 guidelines: Western blot analysis of common EV markers (CD63, CD81, Alix), nanoparticle tracking analysis (NTA), and cryogenic transmission electron microscopy (Cryo-TEM). Lipoprotein contamination was assessed via enzyme-linked immunosorbent assay of individual SEC fractions (R&D Systems; DAPA10, DAPB00). Next-generation sequencing was performed on EVs (HTG Molecular Diagnostics, Inc.), and differential miRNA expression evaluated using Partek Genomics Suite software (version 8.0). Results Twelve patient plasma samples were collected (n = 6 symptomatic; n = 6 asymptomatic). The average age of the cohort was 70.0 ± 5.7 years (asymptomatic, 67.0 ± 5.5 vs symptomatic, 72.5 ± 5.5 years). All patients had severe stenoses with similar peak systolic velocity (asymptomatic 403.2 ± 84.43 vs symptomatic 371.6 ± 175.25; P = .50) and internal carotid artery (ICA):common carotid artery (CCA) ratios (asymptomatic, 5.36 ± 1.07 vs symptomatic, 7.3 ± 5.00; P = .50). CD63 expression confirmed EV enrichment in fractions 7 to 10, with minimal lipoprotein contamination. EV isolation was further confirmed by CD81 and Alix expression (n = 3 patient samples per group). Cryo-TEM identified EVs as bi-layered nanoparticles with electron dense cores (Fig 1). NTA revealed no significant differences in EV concentration or size between groups (n = 3; P > .05). Principal component and heatmap analysis of miRNA sequencing data revealed symptomatic carotid plasma samples clustered together, whereas asymptomatic samples were either starkly different (n = 5) or approximated the symptomatic profiles (n = 1), suggesting a disease gradient (Fig 2). When symptomatic carotid plasma EV-miRNA profiles were compared with asymptomatic specimens, 190 miRNAs were differentially expressed, with miRNA-654-5p and miRNA-127-3p being the most upregulated, and downregulated, respectively (P < .05, fold-change −2< or >2, excluding miRNA with counts <100). Gene set enrichment identified regulation of protein metabolic processes, and negative regulation of cell communication, signaling, and signal transduction as predicted targets of differentially expressed EV-miRNA (P-value < .05). Conclusions Plasma EV-miRNA profiles may differentiate symptomatic vs asymptomatic carotid stenosis and, together with clinical characteristics, may be used in risk stratification of asymptomatic patients.

View full article

Recent Publications

Background Previous studies found that cigarette smoke (CS) exposure could induce NSCLC malignancy and miRNA dysregulation. Yet, the association of CS-induced miRNA dysregulation and NSCLC malignancy has not been clearly understood. This study aimed to evaluate the effect of CS exposure in smokers on the expression of miR-10b-5p and miR-320b in extracellular vesicles (EVs) from NSCLC patients. Material and methods Bioinformatic analysis was conducted to validate miRNA candidates. Blood and tissue samples were collected from NSCLC patients (n = 21) with smoking and non-smoking history. EVs were isolated from plasma and miRNAs were extracted from the isolated EVs. The miRNAs relative expression was analyzed and compared. Results In silico analysis identified miR-320b and miR-10b-5p as potential biomarkers for diagnosing NSCLC in smokers. Experimental analysis revealed differential expression of EVs-associated miRNAs in NSCLC patients with smoking and non-smoking histories. EVs-associated miR-10b-5p was significantly overexpressed in smoker NSCLC patients (p = 0.000), while miR-320b expression was significantly lower in this group (p = 0.018). Additionally, smoking intensity influenced miRNA expression, with higher smoking intensity correlating with increased miR-10b-5p expression and decreased miR-320b expression. ROC analysis demonstrated that EVs were a superior source of miRNAs compared to plasma for NSCLC diagnostics. miR-10b-5p and miR-320b in EVs showed higher diagnostic performance (AUC 0.878; 0.739) compared to plasma (AUC 0.628; 0.559). Conclusion CS exposure induces different expression of miR-10b-5p and miR-320b in EVs of NSCLC patients with smoking history. EV-related miR-10b-5p and miR-320b showed potential to be utilized as prognostic biomarker for smokers NSCLC patients.

2025

Extracellular vesicles (EVs) have emerged as promising therapeutics with broad clinical applications as diagnostic biomarkers and therapeutic drug delivery systems. Yet, these biopharmaceuticals pose a challenge in terms of manufacturing due to their complexity and heterogeneity. Despite advancements in the field, current purification technologies lack scalability and/or selectivity. Affinity chromatography (AC) − coupling unmatched specificity and scalability − could be used to simplify purification processing and generate clinical-grade EVs with higher titers and purity. In the present work, we report the implementation of an immuno-AC resin to capture and purify EVs directly from clarified cellular feedstocks. Firstly, to guide and support marker selection, vesicle phenotype characterization was conducted using single particle interferometric reflectance image sensing (SP-IRIS) coupled with immunofluorescence. CD81 was the marker which shown to be more present and more likely to have the other markers (CD63 and CD9). Thus, anti-CD81 VHH ligand was generated and evaluated towards recombinant CD81 protein and CD81 bearing EV particles using surface plasmon resonance (SPR). Different chromatographic studies with Anti-CD81 ligand immobilized onto agarose beads resin were conducted to optimize the process parameters (residence time, dynamic binding capacity and impurity clearance). At residence time of 2 min, on average 40 % of pure triple tetraspanin-positive EV fraction was recovered. The enrichment in EV particles herein obtained, based on scale-up calculations, it would be possible to produce 1 × 1013 EVs from a 1L cell culture, while meeting impurity requirements in a single-step purification process (impurity removal over 2 log reduction value). A single-step purification process is possible, enabling the successful isolation of homogeneous EVs population, counting with a final HCP titer of 60 ng/mL and 9 ng/mL of dsDNA impurities. EV’s morphological integrity and internalization ability were also demonstrated, showcasing elution’s efficiency under mild conditions. Overall, this work contributes to the development of a novel, highly specific, AC technology using a camelid-derived affinity ligand which, bridging the scalability requirements demanded of large-scale production, could potentiate the advent of EV-based therapies.

2025

Extracellular vesicles (EVs) have emerged as promising therapeutics with broad clinical applications as diagnostic biomarkers and therapeutic drug delivery systems. Yet, these biopharmaceuticals pose a challenge in terms of manufacturing due to their complexity and heterogeneity. Despite advancements in the field, current purification technologies lack scalability and/or selectivity. Affinity chromatography (AC) − coupling unmatched specificity and scalability − could be used to simplify purification processing and generate clinical-grade EVs with higher titers and purity. In the present work, we report the implementation of an immuno-AC resin to capture and purify EVs directly from clarified cellular feedstocks. Firstly, to guide and support marker selection, vesicle phenotype characterization was conducted using single particle interferometric reflectance image sensing (SP-IRIS) coupled with immunofluorescence. CD81 was the marker which shown to be more present and more likely to have the other markers (CD63 and CD9). Thus, anti-CD81 VHH ligand was generated and evaluated towards recombinant CD81 protein and CD81 bearing EV particles using surface plasmon resonance (SPR). Different chromatographic studies with Anti-CD81 ligand immobilized onto agarose beads resin were conducted to optimize the process parameters (residence time, dynamic binding capacity and impurity clearance). At residence time of 2 min, on average 40 % of pure triple tetraspanin-positive EV fraction was recovered. The enrichment in EV particles herein obtained, based on scale-up calculations, it would be possible to produce 1 × 1013 EVs from a 1L cell culture, while meeting impurity requirements in a single-step purification process (impurity removal over 2 log reduction value). A single-step purification process is possible, enabling the successful isolation of homogeneous EVs population, counting with a final HCP titer of 60 ng/mL and 9 ng/mL of dsDNA impurities. EV’s morphological integrity and internalization ability were also demonstrated, showcasing elution’s efficiency under mild conditions. Overall, this work contributes to the development of a novel, highly specific, AC technology using a camelid-derived affinity ligand which, bridging the scalability requirements demanded of large-scale production, could potentiate the advent of EV-based therapies.

2025