A SARS-CoV-2 targeted siRNA-nanoparticle therapy for COVID-19


Idris, Adi, Alicia Davis, Aroon Supramaniam, Dhruba Acharya, Gabrielle Kelly, Yaman Tayyar, Nic West, et al. 2021. “A SARS-CoV-2 Targeted SiRNA-Nanoparticle Therapy for COVID-19.” Molecular Therapy, May. https://doi.org/10.1016/j.ymthe.2021.05.004.

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in humans. Despite several emerging vaccines, there remains no verifiable therapeutic targeted specifically to the virus. Here we present a highly effective small interfering RNA (siRNA) therapeutic against SARS-CoV-2 infection using a novel lipid nanoparticle (LNP) delivery system. Multiple siRNAs targeting highly conserved regions of the SARS-CoV2 virus were screened, and three candidate siRNAs emerged that effectively inhibit the virus by greater than 90% either alone or in combination with one another. We simultaneously developed and screened two novel LNP formulations for the delivery of these candidate siRNA therapeutics to the lungs, an organ that incurs immense damage during SARS-CoV-2 infection. Encapsulation of siRNAs in these LNPs followed by in vivo injection demonstrated robust repression of virus in the lungs and a pronounced survival advantage to the treated mice. Our LNP-siRNA approaches are scalable and can be administered upon the first sign of SARS-CoV-2 infection in humans. We suggest that an siRNA-LNP therapeutic approach could prove highly useful in treating COVID-19 disease as an adjunctive therapy to current vaccine strategies.

View full article

Recent Publications

In the biomedical field, there has been a requirement for developing theranostic nanomaterials with higher biosafety, leading to both diagnosis and therapy. Methylene blue (MB+) is an organic dye with both photoluminescence (PL) and photosensitization abilities to generate singlet oxygen (1O2). However, MB+ easily loses its generation ability by hydrogen reduction in vivo or by forming aggregates. In this study, MB+ immobilized on biocompatible hydroxyapatite (HA) nanoparticles was applied for the bifunctions of efficient PL and photosensitization. The MB+-immobilized HA nanoparticles (MH) formed aggregates with sizes of 80–100 nm in phosphate buffer (PB). The generation amount and efficiency of 1O2 from the nanoparticles in PB seem to depend on the immobilized MB+ amount and the percentage of the monomer, respectively. Considering the larger immobilized amount and percentage of the MB+ monomer, it was found that there was MH with the lower generation amount and efficiency of 1O2 to exhibit the highest PL intensity. The photofunctional measurement of MB+ revealed the state of MB+ molecules on the HA surface, and it was suggested that the MB+ molecules immobilized on the MH surface would form more hydrogen bonds to change their excitation states. In the cellular experiments, the Hela cancer cells reacted with the nanoparticles and showed red-color PL, indicating cellular imaging. Furthermore, the adherent cell coverage decreased by 1O2 generation, indicating the importance of the immobilization amount of the MB+ monomer. Therefore, theranostic nanomaterials with biosafety were successfully synthesized to show two photofunctions, which provide both cellular imaging and photodynamic therapy by the nanohybrid system between HA and MB+.

No items found.
No items found.
No items found.