Analysis of Tumor-Derived Exosomes by Nanoscale Flow Cytometry

Extracellular Vesicles

López-Pacheco, Cynthia, Andrea Bedoya-López, Roxana Olguín-Alor, and Gloria Soldevila. "Analysis of Tumor-Derived Exosomes by Nanoscale Flow Cytometry." In Cancer Cell Signaling, pp. 171-191. Humana, New York, NY, 2021.

The study of tumor exosomes has gained relevance in the last decades due to their potential use for therapeutic and diagnostic application. Although there is extensive knowledge of exosome biology, some biological samples like tumor-derived exosomes have been difficult to characterize due to their complexity and heterogeneity. This distinctive feature makes difficult the identification of specific exosome subpopulations with a shared molecular signature that could allow for targeting of exosomes with therapeutic and diagnostic potential use in cancer patients. Nanoscale flow cytometry has lately emerged as an alternative tool that can be adapted to the study of nanoparticles, such as exosomes. However, the physicochemical properties of these particles are an important issue to consider as nanoparticles need the application of specific settings which differ from those used in conventional flow cytometry of cells. Therefore, in the last few years, one of the main aims has been the optimization of technical and experimental protocols to improve exosome analysis. In this chapter, we discuss several aspects of cytometric systems with a special emphasis in technical considerations of samples and equipment.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

No items found.
No items found.
No items found.