Comprehensive Characterization of Platelet-Enriched MicroRNAs as Biomarkers of Platelet Activation

Extracellular Vesicles
/References

Dysregulation of platelet function is causally connected to thrombus formation and cardiovascular diseases. Therefore, assessing platelet reactivity is crucial. However, current platelet function tests come with pitfalls, limiting clinical use. Plasma miRNA signatures have been suggested as novel biomarkers for predicting/diagnosing cardiovascular diseases and monitoring antiplatelet therapy. Here, we provide results from a comprehensive study on the feasibility of using circulatory platelet miRNAs as surrogate markers of platelet activation. We performed small RNA-Seq on different blood cell types to confirm known and identify novel platelet-enriched miRNAs and validated a panel of 16 miRNAs using RT-qPCR. To identify the main carrier of these blood-based platelet miRNAs, we enriched and analyzed distinct microvesicle populations. Platelets were stimulated with GPVI and P2Y12 agonists in vitro to monitor the release of the selected miRNAs following activation. Finally, the miRNA panel was also measured in plasma from mice undergoing the Folts intervention (recurrent thrombus formation in the carotid artery). Applying an unbiased bioinformatics-supported workflow to our NGS data, we were able to confirm a panel of previously established miRNA biomarker candidates and identify three new candidates (i.e., miR-199a-3p, miR-151a-5p, and miR-148b-3p). Basal levels of platelet-derived miRNAs in plasma were mainly complexed with proteins, not extracellular vesicles. We show that changes in miRNA levels due to platelet activation are detectable using RT-qPCR. In addition, we highlight limitations of studying the in vitro release of miRNAs from platelets. In vivo thrombosis resulted in significant elevations of platelet-derived miRNA levels in mice. In conclusion, we provide in-depth evidence that activated platelets release miRNAs, resulting in measurable changes in circulatory miRNA levels, rendering them promising biomarker candidates.

View full article

Recent Publications

Background Previous studies found that cigarette smoke (CS) exposure could induce NSCLC malignancy and miRNA dysregulation. Yet, the association of CS-induced miRNA dysregulation and NSCLC malignancy has not been clearly understood. This study aimed to evaluate the effect of CS exposure in smokers on the expression of miR-10b-5p and miR-320b in extracellular vesicles (EVs) from NSCLC patients. Material and methods Bioinformatic analysis was conducted to validate miRNA candidates. Blood and tissue samples were collected from NSCLC patients (n = 21) with smoking and non-smoking history. EVs were isolated from plasma and miRNAs were extracted from the isolated EVs. The miRNAs relative expression was analyzed and compared. Results In silico analysis identified miR-320b and miR-10b-5p as potential biomarkers for diagnosing NSCLC in smokers. Experimental analysis revealed differential expression of EVs-associated miRNAs in NSCLC patients with smoking and non-smoking histories. EVs-associated miR-10b-5p was significantly overexpressed in smoker NSCLC patients (p = 0.000), while miR-320b expression was significantly lower in this group (p = 0.018). Additionally, smoking intensity influenced miRNA expression, with higher smoking intensity correlating with increased miR-10b-5p expression and decreased miR-320b expression. ROC analysis demonstrated that EVs were a superior source of miRNAs compared to plasma for NSCLC diagnostics. miR-10b-5p and miR-320b in EVs showed higher diagnostic performance (AUC 0.878; 0.739) compared to plasma (AUC 0.628; 0.559). Conclusion CS exposure induces different expression of miR-10b-5p and miR-320b in EVs of NSCLC patients with smoking history. EV-related miR-10b-5p and miR-320b showed potential to be utilized as prognostic biomarker for smokers NSCLC patients.

2025

Extracellular vesicles (EVs) have emerged as promising therapeutics with broad clinical applications as diagnostic biomarkers and therapeutic drug delivery systems. Yet, these biopharmaceuticals pose a challenge in terms of manufacturing due to their complexity and heterogeneity. Despite advancements in the field, current purification technologies lack scalability and/or selectivity. Affinity chromatography (AC) − coupling unmatched specificity and scalability − could be used to simplify purification processing and generate clinical-grade EVs with higher titers and purity. In the present work, we report the implementation of an immuno-AC resin to capture and purify EVs directly from clarified cellular feedstocks. Firstly, to guide and support marker selection, vesicle phenotype characterization was conducted using single particle interferometric reflectance image sensing (SP-IRIS) coupled with immunofluorescence. CD81 was the marker which shown to be more present and more likely to have the other markers (CD63 and CD9). Thus, anti-CD81 VHH ligand was generated and evaluated towards recombinant CD81 protein and CD81 bearing EV particles using surface plasmon resonance (SPR). Different chromatographic studies with Anti-CD81 ligand immobilized onto agarose beads resin were conducted to optimize the process parameters (residence time, dynamic binding capacity and impurity clearance). At residence time of 2 min, on average 40 % of pure triple tetraspanin-positive EV fraction was recovered. The enrichment in EV particles herein obtained, based on scale-up calculations, it would be possible to produce 1 × 1013 EVs from a 1L cell culture, while meeting impurity requirements in a single-step purification process (impurity removal over 2 log reduction value). A single-step purification process is possible, enabling the successful isolation of homogeneous EVs population, counting with a final HCP titer of 60 ng/mL and 9 ng/mL of dsDNA impurities. EV’s morphological integrity and internalization ability were also demonstrated, showcasing elution’s efficiency under mild conditions. Overall, this work contributes to the development of a novel, highly specific, AC technology using a camelid-derived affinity ligand which, bridging the scalability requirements demanded of large-scale production, could potentiate the advent of EV-based therapies.

2025

Extracellular vesicles (EVs) have emerged as promising therapeutics with broad clinical applications as diagnostic biomarkers and therapeutic drug delivery systems. Yet, these biopharmaceuticals pose a challenge in terms of manufacturing due to their complexity and heterogeneity. Despite advancements in the field, current purification technologies lack scalability and/or selectivity. Affinity chromatography (AC) − coupling unmatched specificity and scalability − could be used to simplify purification processing and generate clinical-grade EVs with higher titers and purity. In the present work, we report the implementation of an immuno-AC resin to capture and purify EVs directly from clarified cellular feedstocks. Firstly, to guide and support marker selection, vesicle phenotype characterization was conducted using single particle interferometric reflectance image sensing (SP-IRIS) coupled with immunofluorescence. CD81 was the marker which shown to be more present and more likely to have the other markers (CD63 and CD9). Thus, anti-CD81 VHH ligand was generated and evaluated towards recombinant CD81 protein and CD81 bearing EV particles using surface plasmon resonance (SPR). Different chromatographic studies with Anti-CD81 ligand immobilized onto agarose beads resin were conducted to optimize the process parameters (residence time, dynamic binding capacity and impurity clearance). At residence time of 2 min, on average 40 % of pure triple tetraspanin-positive EV fraction was recovered. The enrichment in EV particles herein obtained, based on scale-up calculations, it would be possible to produce 1 × 1013 EVs from a 1L cell culture, while meeting impurity requirements in a single-step purification process (impurity removal over 2 log reduction value). A single-step purification process is possible, enabling the successful isolation of homogeneous EVs population, counting with a final HCP titer of 60 ng/mL and 9 ng/mL of dsDNA impurities. EV’s morphological integrity and internalization ability were also demonstrated, showcasing elution’s efficiency under mild conditions. Overall, this work contributes to the development of a novel, highly specific, AC technology using a camelid-derived affinity ligand which, bridging the scalability requirements demanded of large-scale production, could potentiate the advent of EV-based therapies.

2025
No items found.