Human uterine fluid lavage-derived extracellular vesicle isolation: a comparative study for minimally invasive endometrial receptivity assessment

Extracellular Vesicles

RESEARCH QUESTION: Does pre-implantation uterine fluid lavage (UFL) of patients undergoing IVF and frozen embryo transfer (FET) affect implantation and clinical pregnancy rates? Which methods among ultracentrifugation, sucrose cushion and qEV column are suitable for isolating UFL extracellular vesicles? DESIGN: First, UFL was collected from 20 patients undergoing IVF and FET 2 days before embryo transfer as the case group. The control group consisted of 20 patients undergoing IVF and FET patients without lavage. All patients were monitored for 6 weeks. In the next step, the UFLs (n = 30) were collected and pooled. The UFL-derived extracellular vesicles were extracted by ultracentrifugation, sucrose cushion and qEV column methods and characterized. RESULTS: Preimplantation uterine lavage sampling did not affect implantation and clinical pregnancy rates. Extracellular vesicles were successfully isolated from UFL by all three methods. Scanning electron microscopy and dynamic light scattering analysis showed that the isolated vesicles were morphologically spherical. The qEV technique showed that they were smaller and homogenized in size. SDS-PAGE of extracellular vesicles showed a weaker albumin band in the qEV column. Western blot analysis indicated that the isolated extracellular vesicles by the qEV column were more immunoreactive for all the common extracellular vesicle markers (CD81, CD9, CD63, and TSG101). Six reference genes were compared by real-time polymerase chain reaction in the isolated extracellular vesicle subpopulations, and lowest cycle threshold value was observed for the 18SrRNA gene. CONCLUSIONS: The isolation of endometrial secretome extracellular vesicles is a minimally invasive procedure for individual assessment of endometrial receptivity and can be carried out during conception cycles along with transvaginal ultrasonography. Molecular analysis of UFL-derived extracellular vesicle components could suggest biomarkers to determine precise extracellular vesicle timing.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

No items found.
No items found.
No items found.