Engineering a Single Extracellular Vesicle Protein and RNA Assay (siEVPRA) via In Situ Fluorescence Microscopy in a UV Micropatterned Array

Extracellular Vesicles

Abstract The physical and molecular heterogeneity of extracellular vesicles (EVs) confounds bulk biomarker characterization, thus encouraging the development of novel assays capable of profiling EVs at a single-vesicle resolution. Here, we present a single EV (siEV) protein and RNA assay ( siEV PRA) to simultaneously detect proteins, messenger RNAs (mRNAs), and microRNAs (miRNAs) in siEVs. The siEV PRA consists of an array of microdomains embedded on a polyethylene glycol (PEG)-coated glass surface produced via UV photopatterning, functionalized with antibodies to target siEV subpopulations. Fluorescently labeled antibodies and RNA-targeting molecular beacons (MBs) were used to generate signals for proteins, mRNAs, and miRNAs on siEVs detected by total internal reflection fluorescence microscopy (TIRFM), outperforming the sensitivities of ELISA and PCR by three orders of magnitude. Using the siEV PRA, we analyzed EVs harvested from glioblastoma (GBM) cell lines and demonstrated vesicular heterogeneity in protein, mRNA, and miRNA expression through colocalization analyses, and validated the results by bulk RNA sequencing. We further demonstrated the clinical utility of the siEV PRA by detecting different mRNAs and miRNAs associated with GBM in patient samples. Together, these results indicate that the siEV PRA provides an effective platform to investigate the heterogeneity of proteins and RNAs in subpopulations of EVs.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

No items found.
No items found.
No items found.