The emerging role of small extracellular vesicles in saliva and gingival crevicular fluid as diagnostics for periodontitis

Extracellular Vesicles
/References

Han, P., Bartold, P. and Ivanovski, S., 2021. The emerging role of small extracellular vesicles in saliva and gingival crevicular fluid as diagnostics for periodontitis. Journal of Periodontal Research,.

Periodontitis is a highly prevalent multifactorial chronic inflammatory disease associated with a destructive host immune-inflammatory response to microbial dysbiosis. Current clinical diagnosis is reliant on measuring past periodontal tissue loss, with a lack of molecular biomarkers to accurately diagnose periodontitis activity in ‘real-time’. Thus, discovery of new classes of diagnostic biomarkers is of critical importance in periodontology. Small extracellular vesicles (<200 nm in diameter; sEVs) from oral biofluids (saliva and gingival crevicular fluid—GCF) are lipid-encapsulated bilayered vesicles and have recently emerged as a potential source of biomarkers for periodontal disease (gingivitis and periodontitis), due to the cargo of protein, genetic material and lipids derived from their parent cells. There is limited information on the isolation and characterisation methods of saliva/GCF-sEVs or the characterisation of sEVs cargo as biomarkers for periodontitis. In this review, we detail the composition of sEVs and summarise their isolation and characterisation from saliva and GCF. The potential role of saliva and GCF-derived sEVs in periodontitis diagnosis is also explored. It is proposed that sEVs cargo, including protein, microRNA, message RNA and DNA methylation, are potential biomarkers for periodontitis with good diagnostic power (area under the curve—AUC > 0.9).

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023