Co-aggregation of MSC/chondrocyte in a dynamic 3D culture elevates the therapeutic effect of secreted extracellular vesicles on osteoarthritis in a rat model

Extracellular Vesicles

Extracellular vesicles (EVs) have therapeutic effects on osteoarthritis (OA). Some recent strategies could elevate EV's therapeutic properties including cell aggregation, co-culture, and 3D culture. It seems that a combination of these strategies could augment EV production and therapeutic potential. The current study aims to evaluate the quantity of EV yield and the therapeutic effect of EVs harvested from rabbit mesenchymal stem cells (MSCs) aggregates, chondrocyte aggregates, and their co-aggregates in a dynamic 3D culture in a rat osteoarthritis model. MSC and chondrocytes were aggregated and co-aggregated by spinner flasks, and their conditioned medium was collected. EVs were isolated by size exclusion chromatography and characterized in terms of size, morphology and surface markers. The chondrogenic potential of the MSC-ag, Cho-ag and Co-ag EVs on MSC micromass differentiation in chondrogenic media were assessed by qRT-PCR, histological and immunohistochemical analysis. 50 μg of MSC-ag-EVs, Cho-ag-EVs and Co-ag-EVs was injected intra-articularly per knee of OA models established by monoiodoacetate in rats. After 8 weeks follow up, the knee joints were harvested and analyzed by radiographic, histological and immunohistochemical features. MSC/chondrocyte co-aggregation in comparison to MSC or chondrocyte aggregation could increase EV yield during dynamic 3D culture by spinner flasks. Although MSC-ag-, Cho-ag- and Co-ag-derived EVs could induce chondrogenesis similar to transforming growth factor-beta during in vitro study, Co-ag-EV could more effectively prevent OA progression than MSC-ag- and Cho-ag-EVs. Our study demonstrated that EVs harvested from the co-aggregation of MSCs and chondrocytes could be considered as a new therapeutic potential for OA treatment.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

No items found.
No items found.
No items found.