Non-permissive human conventional CD1c+ dendritic cells enable trans-infection of human primary renal tubular epithelial cells and protect BK polyomavirus from neutralization

Viruses
/References

The BK polyomavirus (BKPyV) is a ubiquitous human virus that persists in the renourinary epithelium. Immunosuppression can lead to BKPyV reactivation in the first year post-transplantation in kidney transplant recipients (KTRs) and hematopoietic stem cell transplant recipients. In KTRs, persistent DNAemia has been correlated to the occurrence of polyomavirus-associated nephropathy (PVAN) that can lead to graft loss if not properly controlled. Based on recent observations that conventional dendritic cells (cDCs) specifically infiltrate PVAN lesions, we hypothesized that those cells could play a role in BKPyV infection. We first demonstrated that monocyte-derived dendritic cells (MDDCs), an in vitro model for mDCs, captured BKPyV particles through an unconventional GRAF-1 endocytic pathway. Neither BKPyV particles nor BKPyV-infected cells were shown to activate MDDCs. Endocytosed virions were efficiently transmitted to permissive cells and protected from the antibody-mediated neutralization. Finally, we demonstrated that freshly isolated CD1c+ mDCs from the blood and kidney parenchyma behaved similarly to MDDCs thus extending our results to cells of clinical relevance. This study sheds light on a potential unprecedented CD1c+ mDC involvement in the BKPyV infection as a promoter of viral spreading.

View full article

Recent Publications

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is adapting to continuous presence in humans. Transitions to endemic infection patterns are associated with changes in the spike (S) proteins that direct virus-cell entry. These changes generate antigenic drift and thereby allow virus maintenance in the face of prevalent human antiviral antibodies. These changes also fine tune virus-cell entry dynamics in ways that optimize transmission and infection into human cells. Focusing on the latter aspect, we evaluated the effects of several S protein substitutions on virus-cell membrane fusion, an essential final step in enveloped virus-cell entry. Membrane fusion is executed by integral-membrane “S2” domains, yet we found that substitutions in peripheral “S1” domains altered late-stage fusion dynamics, consistent with S1-S2 heterodimers cooperating throughout cell entry. A specific H655Y change in S1 stabilized a fusion-intermediate S protein conformation and thereby delayed membrane fusion. The H655Y change also sensitized viruses to neutralization by S2-targeting fusion-inhibitory peptides and stem-helix antibodies. The antibodies did not interfere with early fusion-activating steps; rather they targeted the latest stages of S2-directed membrane fusion in a novel neutralization mechanism. These findings demonstrate that single amino acid substitutions in the S proteins both reset viral entry—fusion kinetics and increase sensitivity to antibody neutralization. The results exemplify how selective forces driving SARS-CoV-2 fitness and antibody evasion operate together to shape SARS-CoV-2 evolution.

2024

The current study analyzed the intersecting biophysical, biochemical, and functional properties of extracellular particles (EPs) with the human immunodeficiency virus type-1 (HIV-1) beyond the currently accepted size range for HIV-1. We isolated five fractions (Frac-A through Frac-E) from HIV-infected cells by sequential differential ultracentrifugation (DUC). All fractions showed a heterogeneous size distribution with median particle sizes greater than 100 nm for Frac-A through Frac-D but not for Frac-E, which contained small EPs with an average size well below 50 nm. Synchronized and released cultures contained large infectious EPs in Frac-A, with markers of amphisomes and viral components. Additionally, Frac-E uniquely contained EPs positive for CD63, HSP70, and HIV-1 proteins. Despite its small average size, Frac-E contained membrane-protected viral integrase, detectable only after SDS treatment, indicating that it is enclosed in vesicles. Single particle analysis with dSTORM further supported these findings as CD63, HIV-1 integrase, and the viral surface envelope (Env) glycoprotein (gp) colocalized on the same Frac-E particles. Surprisingly, Frac-E EPs were infectious, and infectivity was significantly reduced by immunodepleting Frac-E with anti-CD63, indicating the presence of this protein on the surface of infectious small EPs in Frac-E. To our knowledge, this is the first time that extracellular vesicle (EV) isolation methods have identified infectious small HIV-1 particles (smHIV-1) that are under 50 nm. Collectively, our data indicate that the crossroads between EPs and HIV-1 potentially extend beyond the currently accepted biophysical properties of HIV-1, which may have further implications for viral pathogenesis.

2024
No items found.