Non-permissive human conventional CD1c+ dendritic cells enable trans-infection of human primary renal tubular epithelial cells and protect BK polyomavirus from neutralization


The BK polyomavirus (BKPyV) is a ubiquitous human virus that persists in the renourinary epithelium. Immunosuppression can lead to BKPyV reactivation in the first year post-transplantation in kidney transplant recipients (KTRs) and hematopoietic stem cell transplant recipients. In KTRs, persistent DNAemia has been correlated to the occurrence of polyomavirus-associated nephropathy (PVAN) that can lead to graft loss if not properly controlled. Based on recent observations that conventional dendritic cells (cDCs) specifically infiltrate PVAN lesions, we hypothesized that those cells could play a role in BKPyV infection. We first demonstrated that monocyte-derived dendritic cells (MDDCs), an in vitro model for mDCs, captured BKPyV particles through an unconventional GRAF-1 endocytic pathway. Neither BKPyV particles nor BKPyV-infected cells were shown to activate MDDCs. Endocytosed virions were efficiently transmitted to permissive cells and protected from the antibody-mediated neutralization. Finally, we demonstrated that freshly isolated CD1c+ mDCs from the blood and kidney parenchyma behaved similarly to MDDCs thus extending our results to cells of clinical relevance. This study sheds light on a potential unprecedented CD1c+ mDC involvement in the BKPyV infection as a promoter of viral spreading.

View full article

Recent Publications

As of 10 December 2021, coronavirus disease 2019 (COVID‐19) caused by SARS‐CoV‐2 accounted for 267 million people with up to 5.3 million deaths worldwide ( Since late 2019, much progress has been made in response to the COVID‐19 pandemic, including the rapid developments of effective vaccines and the treatment guidelines consisting of antiviral drugs, immunomodulators, and critical care support ( However, SARS‐CoV‐2 evolves over time as its genome has a high mutation rate that leads to reasonable concerns of breakthrough infection due to immune escape and resistant strain emergence under antiviral pressure (Lipsitch et al., 2021; Szemiel et al., 2021). A newly emerging Omicron (B.1.1.529) variant rings alarms around the globe that, perhaps, the COVID‐19 war has just begun. Relentless efforts should be made to advance our knowledge and treatment regimens against COVID‐19. These included studies of mesenchymal stem cell (MSC) therapy that aimed to mitigate cytokine storm and promote tissue repair in severely ill patients with COVID‐19 pneumonia and acute respiratory distress syndrome (ARDS) (Hashemian et al., 2021; Meng et al., 2020; Zhu et al., 2021). Nevertheless, as extensively discussed in a recent review by Dr. Phillip W. Askenase of Yale University School of Medicine, the immunomodulatory and regenerative effects of MSC therapy are mediated through MSC‐derived extracellular vesicles (MSC‐EVs) (Askenase, 2020), while the use of MSC‐EVs has less safety concerns of thromboembolism, arrhythmia and malignant transformation. In this direction, MSC‐EV investigations for COVID‐19 treatment would be more appealing and undeniable if MSC‐EVs also exhibit anti‐SARS‐CoV‐2 effects. A previous study revealed that MSC‐EVs pertained antiviral activity against influenza virus in a preclinical model (Khatri et al., 2018). It is known that MSCs are highly resistant to viral infections (Wu et al., 2018), including SARS‐CoV‐2 (Avanzini et al., 2021). We, therefore, hypothesized that the EVs released from MSCs could inhibit SARS‐CoV‐2 infection.

No items found.
No items found.
No items found.