Publications
The latest Tunable Resistive Pulse Sensing (TRPS) and qEV Isolation publications.
Recent Publications
Exosomes in the Pathogenesis, Progression, and Treatment of Osteoarthritis
Osteoarthritis (OA) is a prevalent and debilitating age-related joint disease characterized by articular cartilage degeneration, synovial membrane inflammation, osteophyte formation, as well as subchondral bone sclerosis. OA drugs at present are mainly palliative and do not halt or reverse disease progression. Currently, no disease-modifying OA drugs (DMOADs) are available and total joint arthroplasty remains a last resort. Therefore, there is an urgent need for the development of efficacious treatments for OA management. Among all novel pharmaco-therapeutical options, exosome-based therapeutic strategies are highly promising. Exosome cargoes, which include proteins, lipids, cytokines, and various RNA subtypes, are potentially capable of regulating intercellular communications and gene expression in target cells and tissues involved in OA development. With extensive research in recent years, exosomes in OA studies are no longer limited to classic, mesenchymal stem cell (MSC)-derived vesicles. New origins, structures, and functions of exosomes are constantly being discovered and investigated. This review systematically summarizes the non-classic origins, biosynthesis, and extraction of exosomes, describes modification and delivery techniques, explores their role in OA pathogenesis and progression, and discusses their therapeutic potential and hurdles to overcome in OA treatment.
Exosomes from primed MSCs can educate monocytes as a cellular therapy for hematopoietic acute radiation syndrome
Background Acute radiation syndrome (ARS) is caused by acute exposure to ionizing radiation that damages multiple organ systems but especially the bone marrow (BM). We have previously shown that human macrophages educated with exosomes from human BM-derived mesenchymal stromal cells (MSCs) primed with lipopolysaccharide (LPS) prolonged survival in a xenogeneic lethal ARS model. The purpose of this study was to determine if exosomes from LPS-primed MSCs could directly educate human monocytes (LPS-EEMos) for the treatment of ARS. Methods Human monocytes were educated by exosomes from LPS-primed MSCs and compared to monocytes educated by unprimed MSCs (EEMos) and uneducated monocytes to assess survival and clinical improvement in a xenogeneic mouse model of ARS. Changes in surface molecule expression of exosomes and monocytes after education were determined by flow cytometry, while gene expression was determined by qPCR. Irradiated human CD34+ hematopoietic stem cells (HSCs) were co-cultured with LPS-EEMos, EEMos, or uneducated monocytes to assess effects on HSC survival and proliferation. Results LPS priming of MSCs led to the production of exosomes with increased expression of CD9, CD29, CD44, CD146, and MCSP. LPS-EEMos showed increases in gene expression of IL-6, IL-10, IL-15, IDO, and FGF-2 as compared to EEMos generated from unprimed MSCs. Generation of LPS-EEMos induced a lower percentage of CD14+ monocyte subsets that were CD16+, CD73+, CD86+, or CD206+ but a higher percentage of PD-L1+ cells. LPS-EEMos infused 4 h after lethal irradiation significantly prolonged survival, reducing clinical scores and weight loss as compared to controls. Complete blood counts from LPS-EEMo-treated mice showed enhanced hematopoietic recovery post-nadir. IL-6 receptor blockade completely abrogated the radioprotective survival benefit of LPS-EEMos in vivo in female NSG mice, but only loss of hematopoietic recovery was noted in male NSG mice. PD-1 blockade had no effect on survival. Furthermore, LPS-EEMos also showed benefits in vivo when administered 24 h, but not 48 h, after lethal irradiation. Co-culture of unprimed EEMos or LPS-EEMos with irradiated human CD34+ HSCs led to increased CD34+ proliferation and survival, suggesting hematopoietic recovery may be seen clinically. Conclusion LPS-EEMos are a potential counter-measure for hematopoietic ARS, with a reduced biomanufacturing time that facilitates hematopoiesis.
Exosomes from neuronal stem cells may protect the heart from ischaemia/reperfusion injury via JAK1/2 and gp130
Myocardial infarction requires urgent reperfusion to salvage viable heart tissue. However, reperfusion increases infarct size further by promoting mitochondrial damage in cardiomyocytes. Exosomes from a wide range of different cell sources have been shown to activate cardioprotective pathways in cardiomyocytes, thereby reducing infarct size. Yet, it is currently challenging to obtain highly pure exosomes in quantities enough for clinical studies. To overcome this problem, we used exosomes isolated from CTX0E03 neuronal stem cells, which are genetically stable, conditionally inducible and can be produced on an industrial scale. However, it is unknown whether exosomes from neuronal stem cells may reduce cardiac ischaemia/reperfusion injury. In this study, we demonstrate that exosomes from differentiating CTX0E03 cells can reduce infarct size in mice. In an in vitro assay, these exosomes delayed cardiomyocyte mitochondrial permeability transition pore opening, which is responsible for cardiomyocyte death after reperfusion. The mechanism of MPTP inhibition was via gp130 signalling and the downstream JAK/STAT pathway. Our results support previous findings that exosomes from non-cardiomyocyte-related cells produce exosomes capable of protecting cardiomyocytes from myocardial infarction. We anticipate our findings may encourage scientists to use exosomes obtained from reproducible clinical-grade stocks of cells for their ischaemia/reperfusion studies.
Exosomes for Regulation of Immune Responses and Immunotherapy
Exosomes are membrane-enveloped nanosized (30–150 nm) extracellular vesicles of endosomal origin produced by almost all cell types and encompass a multitude of functioning biomolecules. Exosomes have been considered crucial players of cell-to-cell communication in physiological and pathological conditions. Accumulating evidence suggests that exosomes can modulate the immune system by delivering a plethora of signals that can either stimulate or suppress immune responses, which have potential applications as immunotherapies for cancer and autoimmune diseases. Here, we discuss the current knowledge about the active biomolecular components of exosomes that contribute to exosomal function in modulating different immune cells and also how these immune cell-derived exosomes play critical roles in immune responses. We further discuss the translational potential of engineered exosomes as immunotherapeutic agents with their advantages over conventional nanocarriers for drug delivery and ongoing clinical trials.
Exosomes Derived From Mesenchymal Stem Cells Pretreated With Ischemic Rat Heart Extracts Promote Angiogenesis via the Delivery of DMBT1
Mesenchymal stem cell-derived exosomes (MSC-Exos) have been shown to promote angiogenesis. Treating MSCs with ischemic rat brain extracts was sufficient to augment their benefits in stroke. However, no similar analyses of ischemic heart extracts have been performed to date. We aim to determine whether MSC-Exos derived from MSCs pretreated with ischemic rat heart extract were able to promote angiogenesis and to clarify underlying mechanisms. ELISA (enzyme-linked immunosorbent assay) of heart extracts revealed a significant increase of vascular endothelial growth factor (VEGF) at 24 h post-MI (myocardial infarction) modeling, and time-dependent decreases in hypoxia inducible factor-1α (HIF-1α). MTT and wound healing assays revealed human umbilical vein endothelial cells (HUVECs) migration and proliferation increased following MSCE-Exo treatment (exosomes derived from MSC pretreated with ischemic heart extracts of 24 h post-MI) relative to MSCN-Exo treatment (exosomes derived from MSC pretreated with normal heart extracts). Proteomic analyses of MSCE-Exo and MSCN-Exo were conducted to screen for cargo proteins promoting angiogenesis. Result revealed several angiogenesis-related proteins were upregulated in MSCE-Exo, including DMBT1 (deleted in malignant brain tumors 1). When DMBT1 was silenced in MSCs, HUVECs with MSCDMBT1 RNAi-Exo treatment exhibited impaired proliferative and migratory activity and reductions of DMBT1, p-Akt, β-catenin, and VEGF. To explore how ischemic heart extracts took effects, ELISA was conducted showing a significant increase of IL-22 at 24 h post-MI modeling. P-STAT3, IL22RA1, DMBT1, and VEGF proteins were increased in MSCE relative to MSCN, and VEGF and DMBT1 were increased in MSCE-Exos. Together, these suggest that IL-22 upregulation in ischemic heart extracts can increase DMBT1 in MSCs. Exosomes derived from those MSCs deliver DMBT1 to HUVECs, thereby enhancing their migratory and proliferative activity.
Exosomes derived from bone marrow mesenchymal stromal cells promote remyelination and reduce neuroinflammation in the demyelinating central nervous system
Injury of oligodendrocytes (OLs) induces demyelination, and patients with neurodegenerative diseases exhibit demyelination concomitantly with neurological deficit and cognitive impairment. Oligodendrocyte progenitor cells (OPCs) are present in the adult central nervous system (CNS), and they can proliferate, differentiate, and remyelinate axons after damage. However, remyelination therapies are not in clinical use. Multiple sclerosis (MS) is a major demyelinating disease in the CNS. Mesenchymal stromal cells (MSCs) have demonstrated therapeutic promise in animal models and in clinical trials of MS. Exosomes are nanoparticles generated by nearly all cells and they mediate cell-cell communication by transferring cargo biomaterials. Here, we hypothesize that exosomes harvested from MSCs have a similar therapeutic effect on enhancement of remyelination as that of MSCs. In the present study we employed exosomes derived from rhesus monkey MSCs (MSC-Exo). Two mouse models of demyelination were employed: 1) experimental autoimmune encephalomyelitis (EAE), an animal model of MS; and 2) cuprizone (CPZ) diet model, a toxic demyelination model. MSC-Exo or PBS were intravenously injected twice a week for 4 weeks, starting on day 10 post immunization in EAE mice, or once a week for 2 weeks starting on the day of CPZ diet withdrawal. Neurological and cognitive function were tested, OPC differentiation and remyelination, neuroinflammation and the potential underlying mechanisms were investigated using immunofluorescent staining, transmission electron microscopy and Western blot. Data generated from the EAE model revealed that MSC-Exo cross the blood brain barrier (BBB) and target neural cells. Compared with the controls (p < 0.05), treatment with MSC-Exo: 1) significantly improved neurological outcome; 2) significantly increased the numbers of newly generated OLs (BrdU+/APC+) and mature OLs (APC+), and the level of myelin basic protein (MBP); 3) decreased amyloid-β precursor protein (APP)+ density; 4) decreased neuroinflammation by increasing the M2 phenotype and decreasing the M1 phenotype of microglia, as well as their related cytokines; 5) inhibited the TLR2/IRAK1/NFκB pathway. Furthermore, we confirmed that the MSC-Exo treatment significantly improved cognitive function, promoted remyelination, increased polarization of M2 phenotype and blocked TLR2 signaling in the CPZ model. Collectively, MSC-Exo treatment promotes remyelination by both directly acting on OPCs and indirectly by acting on microglia in the demyelinating CNS. This study provides the cellular and molecular basis for this cell-free exosome therapy on remyelination and modulation of neuroinflammation in the CNS, with great potential for treatment of demyelinating and neurodegenerative disorders.
Exosomes as Radiation Biomarkers
Exosomes are now considered as important mediators of intercellular communication. The exosome cargo contains proteins; mRNA, microRNA (miRNA) and DNA that delivers the information between one cell to other cells can play an important role in identifying the pathophysiological conditions of any cell. Increased understanding of mechanism about exosome release and its communication could provide a novel strategy for the development of biomarkers in various health conditions. Recent shreds of evidence revealed that radiation induces the secretion and alters the composition of exosomes released from radiated cells. The exosomes released from radiated cells alters the signaling pathways in recipient cells. Unraveling the mechanisms related to radiation and exosomes would shed light on the unknown factors that are involved in radiation-induced non-targeted effects. This can provide pavement for the development of biomarkers in radiation emergency situations.
Exosomes as a new frontier of cancer liquid biopsy
Liquid biopsy, characterized by minimally invasive detection through biofluids such as blood, saliva, and urine, has emerged as a revolutionary strategy for cancer diagnosis and prognosis prediction. Exosomes are a subset of extracellular vesicles (EVs) that shuttle molecular cargoes from donor cells to recipient cells and play a crucial role in mediating intercellular communication. Increasing studies suggest that exosomes have a great promise to serve as novel biomarkers in liquid biopsy, since large quantities of exosomes are enriched in body fluids and are involved in numerous physiological and pathological processes. However, the further clinical application of exosomes has been greatly restrained by the lack of high-quality separation and component analysis methods. This review aims to provide a comprehensive overview on the conventional and novel technologies for exosome isolation, characterization and content detection. Additionally, the roles of exosomes serving as potential biomarkers in liquid biopsy for the diagnosis, treatment monitoring, and prognosis prediction of cancer are summarized. Finally, the prospects and challenges of applying exosome-based liquid biopsy to precision medicine are evaluated.
Exosome-mediated mRNA delivery in vivo is safe and can be used to induce SARS-CoV-2 immunity
Functional delivery of mRNA has high clinical potential. Previous studies established that mRNAs can be delivered to cells in vitro and in vivo via RNA-loaded lipid nanoparticles (LNPs). Here we describe an alternative approach using exosomes, the only biologically normal nanovesicle. In contrast to LNPs, which elicited pronounced cellular toxicity, exosomes had no adverse effects in vitro or in vivo at any dose tested. Moreover, mRNA-loaded exosomes were characterized by efficient mRNA encapsulation (∼90%), high mRNA content, consistent size, and a polydispersity index under 0.2. Using an mRNA encoding the red light-emitting luciferase Antares2, we observed that mRNA-loaded exosomes were superior to mRNA-loaded LNPs at delivering functional mRNA into human cells in vitro. Injection of Antares2 mRNA-loaded exosomes also led to strong light emission following injection into the vitreous fluid of the eye or into the tissue of skeletal muscle in mice. Furthermore, we show that repeated injection of Antares2 mRNA-loaded exosomes drove sustained luciferase expression across six injections spanning at least 10 weeks, without evidence of signal attenuation or adverse injection site responses. Consistent with these findings, we observed that exosomes loaded with mRNAs encoding immunogenic forms of the SARS-CoV-2 Spike and Nucleocapsid proteins induced long-lasting cellular and humoral responses to both. Taken together, these results demonstrate that exosomes can be used to deliver functional mRNA to and into cells in vivo.
Exosome-loaded extracellular matrix-mimic hydrogel with anti-inflammatory property Facilitates/promotes growth plate injury repair
Growth plate cartilage has limited self-repair ability, leading to poor bone bridge formation post-injury and ultimately limb growth defects in children. The current corrective surgeries are highly invasive, and outcomes can be unpredictable. Following growth plate injury, the direct loss of extracellular matrix (ECM) coupled with further ECM depletion due to the inhibitory effects of inflammation on the cartilage matrix protein greatly hinder chondrocyte regeneration. We designed an exosome (Exo) derived from bone marrow mesenchymal stem cells (BMSCs) loaded ECM-mimic hydrogel to promote cartilage repair by directly supplementing ECM and anti-inflammatory properties. Aldehyde-functionalized chondroitin sulfate (OCS) was introduced into gelatin methacryloyl (GM) to form GMOCS hydrogel. Our results uncovered that GMOCS hydrogel could significantly promote the synthesis of ECM due to the doping of OCS. In addition, the GMOCS-Exos hydrogel could further promote the anabolism of chondrocytes by inhibiting inflammation and ultimately promote growth plate injury repair through ECM remodeling.
Exosome-Based Molecular Transfer Activity of Macrophage-Like Cells Involves Viability of Oral Carcinoma Cells: Size Exclusion Chromatography and Concentration Filter Method
Extracellular vesicles (EV) heterogeneity is a crucial issue in biology and medicine. In addition, tumor-associated macrophages are key components in cancer microenvironment and immunology. We developed a combination method of size exclusion chromatography and concentration filters (SEC-CF) and aimed to characterize different EV types by their size, cargo types, and functions. A human monocytic leukemia cell line THP-1 was differentiated to CD14-positive macrophage-like cells by stimulation with PMA (phorbol 12-myristate 13-acetate) but not M1 or M2 types. Using the SEC-CF method, the following five EV types were fractionated from the culture supernatant of macrophage-like cells: (i) rare large EVs (500-3000 nm) reminiscent of apoptosomes, (ii) EVs (100-500 nm) reminiscent of microvesicles (or microparticles), (iii) EVs (80-300 nm) containing CD9-positive large exosomes (EXO-L), (iv) EVs (20-200 nm) containing unidentified vesicles/particles, and (v) EVs (10-70 nm) containing CD63/HSP90-positive small exosomes (EXO-S) and particles. For a molecular transfer assay, we developed a THP-1-based stable cell line producinga GFP-fused palmitoylation signal (palmGFP) associated with the membrane. The THP1/palmGFP cells were differentiated into macrophages producing palmGFP-contained EVs. The macrophage/palmGFP-secreted EXO-S and EXO-L efficiently transferred the palmGFP to receiver human oral carcinoma cells (HSC-3/palmTomato), as compared to other EV types. In addition, the macrophage-secreted EXO-S and EXO-L significantly reduced the cell viability (ATP content) in oral carcinoma cells. Taken together, the SEC-CF method is useful for the purification of large and small exosomes with higher molecular transfer activities, enabling efficient molecular delivery to target cells.
Exosomally Targeting microRNA23a Ameliorates Microvascular Endothelial Barrier Dysfunction Following Rickettsial Infection
Spotted fever group rickettsioses caused by Rickettsia (R) are devastating human infections, which mainly target microvascular endothelial cells (ECs) and can induce lethal EC barrier dysfunction in the brain and lungs. Our previous evidence reveals that exosomes (Exos) derived from rickettsial-infected ECs, namely R-ECExos, can induce disruption of the tight junctional (TJ) protein ZO-1 and barrier dysfunction of human normal recipient brain microvascular endothelial cells (BMECs). However, the underlying mechanism remains elusive. Given that we have observed that microRNA23a (miR23a), a negative regulator of endothelial ZO-1 mRNA, is selectively sorted into R-ECExos, the aim of the present study was to characterize the potential functional role of exosomal miR23a delivered by R-ECExos in normal recipient BMECs. We demonstrated that EC-derived Exos (ECExos) have the capacity to deliver oligonucleotide RNAs to normal recipient BMECs in an RNase-abundant environment. miR23a in ECExos impairs normal recipient BMEC barrier function, directly targeting TJ protein ZO-1 mRNAs. In separate studies using a traditional in vitro model and a novel single living-cell biomechanical assay, our group demonstrated that miR23a anti-sense oligonucleotide-enriched ECExos ameliorate R-ECExo-provoked recipient BMEC dysfunction in association with stabilization of ZO-1 in a dose-dependent manner. These results suggest that Exo-based therapy could potentially prove to be a promising strategy to improve vascular barrier function during bacterial infection and concomitant inflammation.
Exosomal long non-coding RNA TRAFD1-4:1 derived from fibroblast-like synoviocytes suppresses chondrocyte proliferation and migration by degrading cartilage extracellular matrix in rheumatoid arthritis
Rheumatoid arthritis (RA) is a chronic, autoimmune and systemic inflammatory disease affecting 1% of the population worldwide. Immune suppression of the activity and progress of RA is vital to reduce the disability and mortality rate as well as improve the quality of life of RA patients. However, the immune molecular mechanism of RA has not been clarified yet. Our results indicated that exosomes derived from TNFα-stimulated RA fibroblast-like synoviocytes (RA-FLSs) suppressed chondrocyte proliferation and migration through modulating cartilage extracellular matrix (CECM) determining by MTS assay, cell cycle analysis, Transwell assay and Western blot (WB). Besides, RNA sequencing and verification by qRT-PCR revealed that exosomal long non-coding RNA (lncRNA) tumor necrosis factor-associated factor 1 (TRAF1)-4:1 derived from RA-FLSs treated with TNFα was a candidate lncRNA, which also inhibited chondrocyte proliferation and migration through degrading CECM. Moreover, RNA sequencing and bioinformatics analysis identified that C-X-C motif chemokine ligand 1 (CXCL1) was a target mRNA of miR-27a-3p while miR-27a-3p was a target miRNA of lnc-TRAF1-4:1 in chondrocytes. Mechanistically, lnc-TRAF1-4:1 upregulated CXCL1 expression through sponging miR-27a-3p as a competing endogenous RNA (ceRNA) in chondrocytes identifying by Dual-luciferase reporter gene assay. Summarily, exosomal lncRNA TRAFD1-4:1 derived from RA-FLSs suppressed chondrocyte proliferation and migration through degrading CECM by upregulating CXCL1 as a sponge of miR-27a-3p. This study uncovered a novel RA-related lncRNA and investigated the roles of RA-FLS-derived exosomes and exosomal lnc-TRAF1-4:1 in articular cartilage impairment, which might provide novel therapeutic targets for RA.
Exosomal and Plasma Non-Coding RNA Signature Associated with Urinary Albumin Excretion in Hypertension
Non-coding RNA (ncRNA), released into circulation or packaged into exosomes, plays important roles in many biological processes in the kidney. The purpose of the present study is to identify a common ncRNA signature associated with early renal damage and its related molecular pathways. Three individual libraries (plasma and urinary exosomes, and total plasma) were prepared from each hypertensive patient (with or without albuminuria) for ncRNA sequencing analysis. Next, an RNA-based transcriptional regulatory network was constructed. The three RNA biotypes with the greatest number of differentially expressed transcripts were long-ncRNA (lncRNA), microRNA (miRNA) and piwi-interacting RNA (piRNAs). We identified a common 24 ncRNA molecular signature related to hypertension-associated urinary albumin excretion, of which lncRNAs were the most representative. In addition, the transcriptional regulatory network showed five lncRNAs (LINC02614, BAALC-AS1, FAM230B, LOC100505824 and LINC01484) and the miR-301a-3p to play a significant role in network organization and targeting critical pathways regulating filtration barrier integrity and tubule reabsorption. Our study found an ncRNA profile associated with albuminuria, independent of biofluid origin (urine or plasma, circulating or in exosomes) that identifies a handful of potential targets, which may be utilized to study mechanisms of albuminuria and cardiovascular damage.
Exogenous loading of extracellular vesicles, virus-like particles, and lentiviral vectors with supercharged proteins
Cell membrane-based biovesicles (BVs) are important candidate drug delivery vehicles and comprise extracellular vesicles, virus-like particles, and lentiviral vectors. Here, we introduce a non-enzymatic assembly of purified BVs, supercharged proteins, and plasmid DNA called pDNA-scBVs. This multicomponent vehicle results from the interaction of negative sugar moieties on BVs and supercharged proteins that contain positively charged amino acids on their surface to enhance their affinity for pDNA. pDNA-scBVs were demonstrated to mediate floxed reporter activation in culture by delivering a Cre transgene. We introduced pDNA-scBVs containing both a CRE-encoding plasmid and a BV-packaged floxed reporter into the brains of Ai9 mice. Successful delivery of both payloads by pDNA-scBVs was confirmed with reporter signal in the striatal brain region. Overall, we developed a more efficient method to load isolated BVs with cargo that functionally modified recipient cells. Augmenting the natural properties of BVs opens avenues for adoptive extracellular interventions using therapeutic loaded cargo.
Exercise-Induced Extracellular Vesicles Delay the Progression of Prostate Cancer
Increasing evidence suggests that regular physical exercise not only reduces the risk of cancer but also improves functional capacity, treatment efficacy and disease outcome in cancer patients. At least partially, these effects are mediated by the secretome of the tissues responding to exercise. The secreted molecules can be released in a carrier-free form or enclosed into extracellular vesicles (EVs). Several recent studies have shown that EVs are actively released into circulation during physical exercise. Here, we for the first time investigated the effects of exercise-induced EVs on the progression of cancer in an F344 rat model of metastatic prostate cancer. Although we did not observe a consistent increase in the circulating EV levels, RNA sequencing analysis demonstrated substantial changes in the RNA content of EVs collected before and immediately after forced wheel running exercise as well as differences between EVs from runners at resting state and sedentary rats. The major RNA biotype in EVs was mRNA, followed by miRNA and rRNA. Molecular functions of differentially expressed RNAs reflected various physiological processes including protein folding, metabolism and regulation of immune responses triggered by the exercise in the parental cells. Intravenous administration of exercise-induced EVs into F344 rats with orthotopically injected syngeneic prostate cancer cells PLS10, demonstrated reduction of the primary tumor volume by 35% and possibly-attenuation of lung metastases. Hence, our data provide the first evidence that exercise-induced EVs may modulate tumor physiology and delay the progression of cancer.
Excretory-secretory products from the brown stomach worm, Teladorsagia circumcincta, exert antimicrobial activity in in vitro growth assays
Background Over the past decade, evidence has emerged of the ability of gastrointestinal (GI) helminth parasites to alter the composition of the host gut microbiome; however, the mechanism(s) underpinning such interactions remain unclear. In the current study, we (i) undertake proteomic analyses of the excretory-secretory products (ESPs), including secreted extracellular vesicles (EVs), of the ‘brown stomach worm’ Teladorsagia circumcincta, one of the major agents causing parasite gastroenteritis in temperate areas worldwide; (ii) conduct bioinformatic analyses to identify and characterise antimicrobial peptides (AMPs) with putative antimicrobial activity; and (iii) assess the bactericidal and/or bacteriostatic properties of T. circumcincta EVs, and whole and EV-depleted ESPs, using bacterial growth inhibition assays. Methods Size-exclusion chromatography was applied to the isolation of EVs from whole T. circumcincta ESPs, followed by EV characterisation via nanoparticle tracking analysis and transmission electron microscopy. Proteomic analysis of EVs and EV-depleted ESPs was conducted using liquid chromatography-tandem mass spectrometry, and prediction of putative AMPs was performed using available online tools. The antimicrobial activities of T. circumcincta EVs and of whole and EV-depleted ESPs against Escherichia coli were evaluated using bacterial growth inhibition assays. Results Several molecules with putative antimicrobial activity were identified in both EVs and EV-depleted ESPs from adult T. circumcincta. Whilst exposure of E. coli to whole ESPs resulted in a significant reduction of colony-forming units over 3 h, bacterial growth was not reduced following exposure to worm EVs or EV-depleted ESPs. Conclusions Our data points towards a bactericidal and/or bacteriostatic function of T. circumcincta ESPs, likely mediated by molecules with antimicrobial activity. Graphical Abstract
Excessive activation of IL-33/ST2 in cancer-associated fibroblasts promotes invasion and metastasis in ovarian cancer
Ovarian cancer is highly prevalent and has high mortality rates due to metastasis and relapse. The cross communication between cancer-associated fibroblasts (CAFs) and cancer-associated macrophages (CAMs) in the ovarian tumor microenvironment leads to cancer cell invasion and metastasis. However, the role of overproduction of IL-33/ST2 in the CAFs of ovarian cancer is still unclear. The expression of IL-33, ST2, apoptosis-related proteins and epithelial-mesenchymal transition (EMT) markers was measured by western blotting. Primary normal fibroblasts and CAFs from ovarian cancerous tissue were isolated and cultured in vitro, and the medium was used to stimulate blood-derived monocytes. Flow cytometry analysis was used to detect the frequency of M2-like macrophages in blood-derived monocytes from patients with ovarian cancer. Cell invasion were evaluated using Transwell assays. A xenograft model was used to study tumor growth in ST2-knockout and wild-type NOD-SCID mice. The results demonstrated higher expression of IL-33 and ST2 in carcinoma tissues compared with in para-carcinoma tissues, and there was a survival improvement associated with elevated IL-33. IL-33 and culture supernatants from CAFs, rather than normal ovarian fibroblasts, led to a higher expression of M2 macrophage marker genes in human blood-derived monocytes. Invasion and migration were aggravated in COC1 cells co-cultured with CAF-induced CAMs, and the EMT marker genes were upregulated. It was reported that EMT marker genes were downregulated and tumor volumes were significantly reduced in ST2-deficient mice. Overall, the IL-33/ST2 axis in ovarian cancer might integrate IL-33-expressing CAFs with M2 type-like CAMs, which aggravated invasion and metastasis by promoting EMT.
EVOO Promotes a Less Atherogenic Profile Than Sunflower Oil in Smooth Muscle Cells Through the Extracellular Vesicles Secreted by Endothelial Cells
Background: Little is known about the effect of extra virgin olive (EVOO) and sunflower oil (SO) on the composition of extracellular vesicles (EVs) secreted by endothelial cells and the effects of these EVs on smooth muscle cells (SMCs). These cells play an important role in the development of atherosclerosis. Methods: We evaluated the effects of endothelial cells-derived EVs incubated with triglyceride-rich lipoproteins obtained after a high-fat meal with EVOO (EVOO-EVs) and SO (SO-EVs), on the transcriptomic profile of SMCs. Results: We found 41 upregulated and 19 downregulated differentially expressed (DE)-miRNAs in EVOO-EVs. Afterwards, SMCs were incubated with EVOO-EVs and SO-EVs. SMCs incubated with SO-EVs showed a greater number of DE-mRNA involved in pathways related to cancer, focal adhesion, regulation of actin cytoskeleton, and MAPK, toll-like receptor, chemokine and Wnt signaling pathways than in SMCs incubated with EVOO-EVs. These DE-mRNAs were involved in biological processes related to the response to endogenous stimulus, cell motility, regulation of intracellular signal transduction and cell population proliferation. Conclusion: EVOO and SO can differently modify the miRNA composition of HUVEC-derived EVs. These EVs can regulate the SMCs transcriptomic profile, with SO-EVs promoting a profile more closely linked to the development of atherosclerosis than EVOO-EVs.
Evidence of Immune Modulators in the Secretome of the Equine Tapeworm Anoplocephala perfoliata
Anoplocephala perfoliata is a neglected gastro-intestinal tapeworm, commonly infecting horses worldwide. Molecular investigation of A. perfoliata is hampered by a lack of tools to better understand the host-parasite interface. This interface is likely influenced by parasite derived immune modulators released in the secretome as free proteins or components of extracellular vesicles (EVs). Therefore, adult RNA was sequenced and de novo assembled to generate the first A. perfoliata transcriptome. In addition, excretory secretory products (ESP) from adult A. perfoliata were collected and EVs isolated using size exclusion chromatography, prior to proteomic analysis of the EVs, the EV surface and EV depleted ESP. Transcriptome analysis revealed 454 sequences homologous to known helminth immune modulators including two novel Sigma class GSTs, five α-HSP90s, and three α-enolases with isoforms of all three observed within the proteomic analysis of the secretome. Furthermore, secretome proteomics identified common helminth proteins across each sample with known EV markers, such as annexins and tetraspanins, observed in EV fractions. Importantly, 49 of the 454 putative immune modulators were identified across the secretome proteomics contained within and on the surface of EVs in addition to those identified in free ESP. This work provides the molecular tools for A. perfoliata to reveal key players in the host-parasite interaction within the horse host.
Evidence for Effects of Extracellular Vesicles on Physical, Inflammatory, Transcriptome and Reward Behaviour Status in Mice
Immune-inflammatory activation impacts extracellular vesicles (EVs), including their miRNA cargo. There is evidence for changes in the EV miRNome in inflammation-associated neuropsychiatric disorders. This mouse study investigated: (1) effects of systemic lipopolysaccharide (LPS) and chronic social stress (CSS) on plasma EV miRNome; and (2) physiological, transcriptional, and behavioural effects of peripheral or central delivered LPS-activated EVs in recipient mice. LPS or CSS effects on the plasma EV miRNome were assessed by using microRNA sequencing. Recipient mice received plasma EVs isolated from LPS-treated or SAL-treated donor mice or vehicle only, either intravenously or into the nucleus accumbens (NAc), on three consecutive days. Bodyweight, spleen or NAc transcriptome and reward (sucrose) motivation were assessed. LPS and CSS increased the expression of 122 and decreased expression of 20 plasma EV miRNAs, respectively. Peripheral LPS-EVs reduced bodyweight, and both LPS-EVs and SAL-EVs increased spleen expression of immune-relevant genes. NAc-infused LPS-EVs increased the expression of 10 immune-inflammatory genes. Whereas motivation increased similarly across test days in all groups, the effect of test days was more pronounced in mice that received peripheral or central LPS-EVs compared with other groups. This study provides causal evidence that increased EV levels impact physiological and behavioural processes and are of potential relevance to neuropsychiatric disorders.
Evaluation of Plant Ceramide Species-Induced Exosome Release from Neuronal Cells and Exosome Loading Using Deuterium Chemistry
The extracellular accumulation of aggregated amyloid-β (Aβ) in the brain leads to the early pathology of Alzheimer's disease (AD). The administration of exogenous plant-type ceramides into AD model mice can promote the release of neuronal exosomes, a subtype of extracellular vesicles, that can mediate Aβ clearance. In vitro studies showed that the length of fatty acids in mammalian-type ceramides is crucial for promoting neuronal exosome release. Therefore, investigating the structures of plant ceramides is important for evaluating the potential in releasing exosomes to remove Aβ. In this study, we assessed plant ceramide species with D-erythro-(4E,8Z)-sphingadienine and D-erythro-(8Z)-phytosphingenine as sphingoid bases that differ from mammalian-type species. Some plant ceramides were more effective than mammalian ceramides at stimulating exosome release. In addition, using deuterium chemistry-based lipidomics, most exogenous plant ceramides were confirmed to be derived from exosomes. These results suggest that the ceramide-dependent upregulation of exosome release may promote the release of exogenous ceramides from cells, and plant ceramides with long-chain fatty acids can effectively release neuronal exosomes and prevent AD pathology.
Evaluation of cutaneous and circulating (serum and exosomes) levels of chemokines (CCL17, CCL22, CCL27 and CCL28) in atopic dogs and their correlation with severity of the disease
BACKGROUND: Canine atopic dermatitis (AD) is a complex multifactorial disease characterised by an exaggerated immunological response. Little is known about the role that cutaneous and circulating chemokines play in disease severity. OBJECTIVE: To evaluate the messenger (m)RNA and protein levels of selected chemokines in skin and serum of healthy and atopic dogs, and in the atopic group to determine whether there is a correlation with disease severity. MATERIALS AND METHODS: Skin biopsies and blood samples were taken from 12 privately owned atopic [lesional (AD-L) and nonlesional (AD-NL) skin] and 12 privately owned healthy dogs. Circulating exosomes were extracted from the serum. Cutaneous and exosomal mRNA levels of CCL17, CCL22, CCL27 and CCL28 were quantified using quantitative real-time PCR. Protein levels were evaluated using canine-specific ELISA kits. The severity and extent of the clinical signs also were assessed in the atopic dogs using Canine Atopic Dermatitis Extent and Severity Index, 4th iteration (CADESI-04) and a validated pruritus Visual Analog Scale (pVAS). RESULTS: The expression of CCL28 exosomes in skin was greater in AD-L when compared to healthy (P = 0.019) and AD-NL (P = 0.002) samples. However, serum expression was lower in dogs with AD compared to healthy dogs (P = 0.03). A higher expression of CCL17 and CCL22 was seen in AD-L when compared to healthy skin (P = 0.018 and P = 0.019, respectively). There also was a positive correlation between clinical scores and CCL22 (AD-NL; r = 0.6, P = 0.05) and between the pruritus score and CCL22 (AD-L; r = 0.6, P = 0.05). Differences in CCL27 concentrations were not observed. CONCLUSIONS AND CLINICAL IMPORTANCE: This study suggests that CCL17, CCL22 and CCL28 may play a role in the cutaneous inflammatory response in atopic dogs. They may be considered as markers of disease severity, although further studies are needed to validate these findings.
Evaluation of Biopolymer Materials and Synthesis Techniques to Develop a Rod-Shaped Biopolymer Surrogate for Legionella pneumophila
Biopolymer microparticles have been developed for applications that require biocompatibility and biodegradability, such as drug delivery. In this study, we assessed the production of microparticles using carnauba wax, κ-carrageenan, alginate, and poly (lactic-co-glycolic acid) (PLGA) with the aim of developing a novel, DNA-tracer-loaded, biopolymer surrogate with a size, shape, surface charge, and relative hydrophobicity similar to stationary-phase Legionella pneumophila to mimic the bacteria's mobility and persistence in engineered water systems. We found that the type and concentration of biopolymer, reaction conditions, and synthesis methods affected the morphology, surface charge, relative hydrophobicity, and DNA tracer loading efficiency of the biopolymer microparticles produced. Carnauba wax, κ-carrageenan, and alginate (Protanal®, and low and medium viscosity) produced highly polydisperse microspheres. In contrast, PLGA and alginate-CaCO3 produced uniform microspheres and rod-shaped microparticles, respectively, with high DNA tracer loading efficiencies (PLGA 70% and alginate-CaCO3 95.2 ± 5.7%) and high reproducibilities. Their synthesis reproducibility was relatively high. The relative hydrophobicity of PLGA microspheres closely matched the cell surface hydrophobicity of L. pneumophila but not the bacterial morphology, whereas the polyelectrolyte layer-by-layer assembly was required to enhance the relative hydrophobicity of alginate-CaCO3 microparticles. Following this surface modification, alginate-CaCO3 microparticles represented the best match to L. pneumophila in size, morphology, surface charge, and relative hydrophobicity. This new biopolymer surrogate has the potential to be used as a mimic to study the mobility and persistence of L. pneumophila in water systems where the use of the pathogen is impractical and unsafe.