Exosomes in the Pathogenesis, Progression, and Treatment of Osteoarthritis

Extracellular Vesicles
/References

Fan, Yishu, Zhong Li, and Yuchen He. 2022. “Exosomes in the Pathogenesis, Progression, and Treatment of Osteoarthritis.” Bioengineering 9 (3): 99. https://doi.org/10.3390/bioengineering9030099.

Osteoarthritis (OA) is a prevalent and debilitating age-related joint disease characterized by articular cartilage degeneration, synovial membrane inflammation, osteophyte formation, as well as subchondral bone sclerosis. OA drugs at present are mainly palliative and do not halt or reverse disease progression. Currently, no disease-modifying OA drugs (DMOADs) are available and total joint arthroplasty remains a last resort. Therefore, there is an urgent need for the development of efficacious treatments for OA management. Among all novel pharmaco-therapeutical options, exosome-based therapeutic strategies are highly promising. Exosome cargoes, which include proteins, lipids, cytokines, and various RNA subtypes, are potentially capable of regulating intercellular communications and gene expression in target cells and tissues involved in OA development. With extensive research in recent years, exosomes in OA studies are no longer limited to classic, mesenchymal stem cell (MSC)-derived vesicles. New origins, structures, and functions of exosomes are constantly being discovered and investigated. This review systematically summarizes the non-classic origins, biosynthesis, and extraction of exosomes, describes modification and delivery techniques, explores their role in OA pathogenesis and progression, and discusses their therapeutic potential and hurdles to overcome in OA treatment.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023
No items found.
No items found.
No items found.