Exosomes derived from bone marrow mesenchymal stromal cells promote remyelination and reduce neuroinflammation in the demyelinating central nervous system

Extracellular Vesicles
/References

Injury of oligodendrocytes (OLs) induces demyelination, and patients with neurodegenerative diseases exhibit demyelination concomitantly with neurological deficit and cognitive impairment. Oligodendrocyte progenitor cells (OPCs) are present in the adult central nervous system (CNS), and they can proliferate, differentiate, and remyelinate axons after damage. However, remyelination therapies are not in clinical use. Multiple sclerosis (MS) is a major demyelinating disease in the CNS. Mesenchymal stromal cells (MSCs) have demonstrated therapeutic promise in animal models and in clinical trials of MS. Exosomes are nanoparticles generated by nearly all cells and they mediate cell-cell communication by transferring cargo biomaterials. Here, we hypothesize that exosomes harvested from MSCs have a similar therapeutic effect on enhancement of remyelination as that of MSCs. In the present study we employed exosomes derived from rhesus monkey MSCs (MSC-Exo). Two mouse models of demyelination were employed: 1) experimental autoimmune encephalomyelitis (EAE), an animal model of MS; and 2) cuprizone (CPZ) diet model, a toxic demyelination model. MSC-Exo or PBS were intravenously injected twice a week for 4 weeks, starting on day 10 post immunization in EAE mice, or once a week for 2 weeks starting on the day of CPZ diet withdrawal. Neurological and cognitive function were tested, OPC differentiation and remyelination, neuroinflammation and the potential underlying mechanisms were investigated using immunofluorescent staining, transmission electron microscopy and Western blot. Data generated from the EAE model revealed that MSC-Exo cross the blood brain barrier (BBB) and target neural cells. Compared with the controls (p < 0.05), treatment with MSC-Exo: 1) significantly improved neurological outcome; 2) significantly increased the numbers of newly generated OLs (BrdU+/APC+) and mature OLs (APC+), and the level of myelin basic protein (MBP); 3) decreased amyloid-β precursor protein (APP)+ density; 4) decreased neuroinflammation by increasing the M2 phenotype and decreasing the M1 phenotype of microglia, as well as their related cytokines; 5) inhibited the TLR2/IRAK1/NFκB pathway. Furthermore, we confirmed that the MSC-Exo treatment significantly improved cognitive function, promoted remyelination, increased polarization of M2 phenotype and blocked TLR2 signaling in the CPZ model. Collectively, MSC-Exo treatment promotes remyelination by both directly acting on OPCs and indirectly by acting on microglia in the demyelinating CNS. This study provides the cellular and molecular basis for this cell-free exosome therapy on remyelination and modulation of neuroinflammation in the CNS, with great potential for treatment of demyelinating and neurodegenerative disorders.

View full article

Recent Publications

Background Previous studies found that cigarette smoke (CS) exposure could induce NSCLC malignancy and miRNA dysregulation. Yet, the association of CS-induced miRNA dysregulation and NSCLC malignancy has not been clearly understood. This study aimed to evaluate the effect of CS exposure in smokers on the expression of miR-10b-5p and miR-320b in extracellular vesicles (EVs) from NSCLC patients. Material and methods Bioinformatic analysis was conducted to validate miRNA candidates. Blood and tissue samples were collected from NSCLC patients (n = 21) with smoking and non-smoking history. EVs were isolated from plasma and miRNAs were extracted from the isolated EVs. The miRNAs relative expression was analyzed and compared. Results In silico analysis identified miR-320b and miR-10b-5p as potential biomarkers for diagnosing NSCLC in smokers. Experimental analysis revealed differential expression of EVs-associated miRNAs in NSCLC patients with smoking and non-smoking histories. EVs-associated miR-10b-5p was significantly overexpressed in smoker NSCLC patients (p = 0.000), while miR-320b expression was significantly lower in this group (p = 0.018). Additionally, smoking intensity influenced miRNA expression, with higher smoking intensity correlating with increased miR-10b-5p expression and decreased miR-320b expression. ROC analysis demonstrated that EVs were a superior source of miRNAs compared to plasma for NSCLC diagnostics. miR-10b-5p and miR-320b in EVs showed higher diagnostic performance (AUC 0.878; 0.739) compared to plasma (AUC 0.628; 0.559). Conclusion CS exposure induces different expression of miR-10b-5p and miR-320b in EVs of NSCLC patients with smoking history. EV-related miR-10b-5p and miR-320b showed potential to be utilized as prognostic biomarker for smokers NSCLC patients.

2025

Extracellular vesicles (EVs) have emerged as promising therapeutics with broad clinical applications as diagnostic biomarkers and therapeutic drug delivery systems. Yet, these biopharmaceuticals pose a challenge in terms of manufacturing due to their complexity and heterogeneity. Despite advancements in the field, current purification technologies lack scalability and/or selectivity. Affinity chromatography (AC) − coupling unmatched specificity and scalability − could be used to simplify purification processing and generate clinical-grade EVs with higher titers and purity. In the present work, we report the implementation of an immuno-AC resin to capture and purify EVs directly from clarified cellular feedstocks. Firstly, to guide and support marker selection, vesicle phenotype characterization was conducted using single particle interferometric reflectance image sensing (SP-IRIS) coupled with immunofluorescence. CD81 was the marker which shown to be more present and more likely to have the other markers (CD63 and CD9). Thus, anti-CD81 VHH ligand was generated and evaluated towards recombinant CD81 protein and CD81 bearing EV particles using surface plasmon resonance (SPR). Different chromatographic studies with Anti-CD81 ligand immobilized onto agarose beads resin were conducted to optimize the process parameters (residence time, dynamic binding capacity and impurity clearance). At residence time of 2 min, on average 40 % of pure triple tetraspanin-positive EV fraction was recovered. The enrichment in EV particles herein obtained, based on scale-up calculations, it would be possible to produce 1 × 1013 EVs from a 1L cell culture, while meeting impurity requirements in a single-step purification process (impurity removal over 2 log reduction value). A single-step purification process is possible, enabling the successful isolation of homogeneous EVs population, counting with a final HCP titer of 60 ng/mL and 9 ng/mL of dsDNA impurities. EV’s morphological integrity and internalization ability were also demonstrated, showcasing elution’s efficiency under mild conditions. Overall, this work contributes to the development of a novel, highly specific, AC technology using a camelid-derived affinity ligand which, bridging the scalability requirements demanded of large-scale production, could potentiate the advent of EV-based therapies.

2025

Extracellular vesicles (EVs) have emerged as promising therapeutics with broad clinical applications as diagnostic biomarkers and therapeutic drug delivery systems. Yet, these biopharmaceuticals pose a challenge in terms of manufacturing due to their complexity and heterogeneity. Despite advancements in the field, current purification technologies lack scalability and/or selectivity. Affinity chromatography (AC) − coupling unmatched specificity and scalability − could be used to simplify purification processing and generate clinical-grade EVs with higher titers and purity. In the present work, we report the implementation of an immuno-AC resin to capture and purify EVs directly from clarified cellular feedstocks. Firstly, to guide and support marker selection, vesicle phenotype characterization was conducted using single particle interferometric reflectance image sensing (SP-IRIS) coupled with immunofluorescence. CD81 was the marker which shown to be more present and more likely to have the other markers (CD63 and CD9). Thus, anti-CD81 VHH ligand was generated and evaluated towards recombinant CD81 protein and CD81 bearing EV particles using surface plasmon resonance (SPR). Different chromatographic studies with Anti-CD81 ligand immobilized onto agarose beads resin were conducted to optimize the process parameters (residence time, dynamic binding capacity and impurity clearance). At residence time of 2 min, on average 40 % of pure triple tetraspanin-positive EV fraction was recovered. The enrichment in EV particles herein obtained, based on scale-up calculations, it would be possible to produce 1 × 1013 EVs from a 1L cell culture, while meeting impurity requirements in a single-step purification process (impurity removal over 2 log reduction value). A single-step purification process is possible, enabling the successful isolation of homogeneous EVs population, counting with a final HCP titer of 60 ng/mL and 9 ng/mL of dsDNA impurities. EV’s morphological integrity and internalization ability were also demonstrated, showcasing elution’s efficiency under mild conditions. Overall, this work contributes to the development of a novel, highly specific, AC technology using a camelid-derived affinity ligand which, bridging the scalability requirements demanded of large-scale production, could potentiate the advent of EV-based therapies.

2025
No items found.