Publications

The latest Tunable Resistive Pulse Sensing (TRPS) and qEV Isolation publications.

Select year
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Recent Publications

αvβ1 integrin is enriched in extracellular vesicles of metastatic breast cancer cells: A mechanism mediated by galectin‐3

Breast cancer cells release a large quantity of biocargo-bearing extracellular vesicles (EVs), which mediate intercellular communication within the tumour microenvironment and promote metastasis. To identify EV-bound proteins related to metastasis, we used mass spectrometry to profile EVs from highly and poorly metastatic breast cancer lines of human and mouse origins. Comparative mass spectrometry indicated that integrins, including αv and β1 subunits, are preferentially enriched in EVs of highly metastatic origin over those of poorly metastatic origin. These results are consistent with our histopathological findings, which show that integrin αv is associated with disease progression in breast cancer patients. Integrin αv colocalizes with the multivesicular-body marker CD63 at a higher frequency in the tumour and is enriched in circulating EVs of breast cancer patients at late stages when compared with circulating EVs from early-stage patients. With a magnetic bead-based flow cytometry assay, we confirmed that integrins αv and β1 are enriched in the CD63+ subsets of EVs from both human and mouse highly metastatic cells. By analysing the level of integrin αv on circulating EVs, this assay could predict the metastatic potential of a xenografted mouse model. To explore the export mechanism of integrins into EVs, we performed immunoprecipitation mass spectrometry and identified members of the galectin family as potential shuttlers of integrin αvβ1 into EVs. In particular, knockdown of galectin-3, but not galectin-1, causes a reduction in the levels of cell surface integrins β1 and αv, and decreases the colocalization of these integrins with CD63. Importantly, knockdown of galectin-3 leads to a decrease of integrin αvβ1 export into the EVs concomitant with a decrease in the metastatic potential of breast cancer cells. Moreover, inhibition of the integrin αvβ1 complex leads to a reduction in the binding of EVs to fibronectin, suggesting that integrin αvβ1 is important for EV retention in the extracellular matrix. EVs retained in the extracellular matrix are taken up by fibroblasts, which differentiate into cancer associated fibroblasts. In summary, our data indicate an important link between EV-bound integrin αvβ1 with breast cancer metastasis and provide additional insights into the export of integrin αvβ1 into EVs in the context of metastasis.

2022

Assessment of extracellular vesicle isolation methods from human stool supernatant

Extracellular vesicles (EVs) are of growing interest due to their potential diagnostic, disease surveillance, and therapeutic applications. While several studies have evaluated EV isolation methods in various biofluids, there are few if any data on these techniques when applied to stool. The latter is an ideal biospecimen for studying EVs and colorectal cancer (CRC) because the release of tumour markers by luminal exfoliation into stool occurs earlier than vascular invasion. Since EV release is a conserved mechanism, bacteria in stool contribute to the overall EV population. In this study, we assessed five EV separation methods (ultracentrifugation [UC], precipitation [EQ-O, EQ-TC], size exclusion chromatography [SEC], and ultrafiltration [UF]) for total recovery, reproducibility, purity, RNA composition, and protein expression in stool supernatant. CD63, TSG101, and ompA proteins were present in EV fractions from all methods except UC. Human (18s) and bacterial (16s) rRNA was detected in stool EV preparations. Enzymatic treatment prior to extraction is necessary to avoid non-vesicular RNA contamination. Ultrafiltration had the highest recovery, RNA, and protein yield. After assessing purity further, SEC was the isolation method of choice. These findings serve as the groundwork for future studies that use high throughput omics technologies to investigate the potential of stool-derived EVs as a source for novel biomarkers for early CRC detection.

2022

Benchmarking a Microfluidic-Based Filtration for Isolating Biological Particles

Isolating particles from complex fluids is a crucial approach in multiple fields including biomedicine. In particular, biological matrices contain a myriad of distinct particles with different sizes and structures. Extracellular vesicles (EVs), for instance, are nanosized particles carrying vital information from donor to recipient cells, and they have garnered significant impact on disease diagnostics, drug delivery, and theranostics applications. Among all the EV types, exosome particles are one of the smallest entities, sizing from 30 to 100 nm. Separating such small substances from a complex media such as tissue culture and serum is still one of the most challenging steps in this field. Membrane filtration is one of the convenient approaches for these operations; yet clogging, low-recovery, and high fouling are still major obstacles. In this study, we design a two-filter-integrated microfluidic device focusing on dead-end and cross-flow processes at the same time, thereby minimizing any interfering factors on the recovery. The design of this platform is also numerically assessed to understand pressure-drop and flow rate effects over the procedure. As a model, we isolate exosome particles from human embryonic kidney cells cultured in different conditions, which also mimic complex fluids such as serum. Moreover, by altering the flow direction, we refresh the membranes for minimizing clogging issues and benchmark the platform performance for multitime use. By comprehensively analyzing the design and operation parameters of this platform, we address the aforementioned existing barriers in the recovery, clogging, and fouling factors, thereby achieving the use of a microfluidic device multiple times for bio-nanoparticle isolation without any notable issues.

2022

Assembly and Entry of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2): Evaluation Using Virus-Like Particles

Research on infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is currently restricted to BSL-3 laboratories. SARS-CoV2 virus-like particles (VLPs) offer a BSL-1, replication-incompetent system that can be used to evaluate virus assembly and virus-cell entry processes in tractable cell culture conditions. Here, we describe a SARS-CoV2 VLP system that utilizes nanoluciferase (Nluc) fragment complementation to track assembly and entry. We utilized the system in two ways. Firstly, we investigated the requirements for VLP assembly. VLPs were produced by concomitant synthesis of three viral membrane proteins, spike (S), envelope (E), and matrix (M), along with the cytoplasmic nucleocapsid (N). We discovered that VLP production and secretion were highly dependent on N proteins. N proteins from related betacoronaviruses variably substituted for the homologous SARS-CoV2 N, and chimeric betacoronavirus N proteins effectively supported VLP production if they contained SARS-CoV2 N carboxy-terminal domains (CTD). This established the CTDs as critical features of virus particle assembly. Secondly, we utilized the system by investigating virus-cell entry. VLPs were produced with Nluc peptide fragments appended to E, M, or N proteins, with each subsequently inoculated into target cells expressing complementary Nluc fragments. Complementation into functional Nluc was used to assess virus-cell entry. We discovered that each of the VLPs were effective at monitoring virus-cell entry, to various extents, in ways that depended on host cell susceptibility factors. Overall, we have developed and utilized a VLP system that has proven useful in identifying SARS-CoV2 assembly and entry features.

2021

Applications of cell resealing to reconstitute microRNA loading to extracellular vesicles

MicroRNAs (miRNAs) are cargo carried by extracellular vesicles (EVs) and are associated with cell–cell interactions. The response to the cellular environment, such as disease states, genetic/metabolic changes, or differences in cell type, highly regulates cargo sorting to EVs. However, morphological features during EV formation and secretion involving miRNA loading are unknown. This study developed a new method of EV loading using cell resealing and reconstituted the elementary miRNA-loading processes. Morphology, secretory response, and cellular uptake ability of EVs obtained from intact and resealed HeLa cells were comparable. Exogenously added soluble factors were introduced into multivesicular endosomes (MVEs) and their subsequent secretion to the extracellular region occurred in resealed HeLa cells. In addition, miRNA transport to MVEs and miRNA encapsulation to EVs followed a distinct pathway regulated by RNA-binding proteins, such as Argonaute and Y-box binding protein 1, depending on miRNA types. Our cell-resealing system can analyze disease-specific EVs derived from disease model cells, where pathological cytosol is introduced into cells. Thus, EV formation in resealed cells can be used not only to create a reconstitution system to give mechanistic insight into EV encapsulation but also for applications such as loading various molecules into EVs and identifying disease-specific EV markers.

2021

Applications and Biological Functions of Exosomes: A Comprehensive Review

Exosomes are also known as extracellular vesicles (EVs) which is bounded by a membrane mostly seen in eukaryotic cells secreted within the endosomal compartment along with some of the selected composition of RNA, proteins, lipids and DNA. They are capable of transferring signals among cells therefore it is used as a mediator for cell-to-cell communication. Exosomes helps in the excretion of cellular waste from the body. Exosomes possess various widespread activity in many of the biological functions such as transferring the biomolecules like enzymes, proteins, ribonucleic acid, lipids and also in the regulation of various pathological and physiological process in various diseases. Exosomes are released in to the in vitro growth medium with the help of cultured cells. They are said to be identified in coined matrix and tissue matrix. They are also identified in some of the biological fluids such as cerebrospinal fluid, urine, blood. Exosomes are considered as promising biomarkers in identification and treatment of many diseases as they contribute a lot in the diagnosis of various therapies. The efficacy and stability of imaging probes and therapeutics are enhanced by its biocompatible nature. Exosomes play a major role because of their use in the field of clinical application. It is important to understand the molecular mechanism behind their function and transport in order to explore more about exosomes. Here we discuss about the review and advancement done in the field of exosomes along with their biomedical applications, isolation techniques and biological functions.

2021

Application of Magnetic Nanoparticles for Rapid Detection and In Situ Diagnosis in Clinical Oncology

Screening, monitoring, and diagnosis are critical in oncology treatment. However, there are limitations with the current clinical methods, notably the time, cost, and special facilities required for radioisotope-based methods. An alternative approach, which uses magnetic beads, offers faster analyses with safer materials over a wide range of oncological applications. Magnetic beads have been used to detect extracellular vesicles (EVs) in the serum of pancreatic cancer patients with statistically different EV levels in preoperative, postoperative, and negative control samples. By incorporating fluorescence, magnetic beads have been used to quantitatively measure prostate-specific antigen (PSA), a prostate cancer biomarker, which is sensitive enough even at levels found in healthy patients. Immunostaining has also been incorporated with magnetic beads and compared with conventional immunohistochemical methods to detect lesions; the results suggest that immunostained magnetic beads could be used for pathological diagnosis during surgery. Furthermore, magnetic nanoparticles, such as superparamagnetic iron oxide nanoparticles (SPIONs), can detect sentinel lymph nodes in breast cancer in a clinical setting, as well as those in gallbladder cancer in animal models, in a surgery-applicable timeframe. Ultimately, recent research into the applications of magnetic beads in oncology suggests that the screening, monitoring, and diagnosis of cancers could be improved and made more accessible through the adoption of this technology.

2022

Antioxidative Effects of Carrot-Derived Nanovesicles in Cardiomyoblast and Neuroblastoma Cells

Oxidative stress is implicated in many diseases, including cardiovascular and neurodegenerative diseases. Because an increased level of oxidative stress causes apoptosis, it is necessary to inhibit cellular responses to oxidative stress. In this study, Carex, a nanovesicle from carrot, was isolated and investigated as a novel biomaterial with antioxidative function in cardiomyoblasts and neuroblastoma cells. A high concentration of nanovesicles was purified from carrots, using size-exclusion chromatography in combination with ultrafiltration. The characterization of Carex demonstrated that it had properties similar to those of extracellular vesicles. Carex showed low cytotoxicity in both H9C2 cardiomyoblasts and SH-SY5Y neuroblastoma cells, when a high level of Carex was delivered to the cells. Carex was further investigated for its antioxidative and apoptotic effects, and it significantly inhibited ROS generation and apoptosis in vitro in myocardial infarction and Parkinson’s disease models. Carex inhibited the reduction of antioxidative molecule expression, including Nrf-2, HO-1, and NQO-1, in both models. Considering its antioxidative function and high production yield, Carex is a potential drug candidate for the treatment of myocardial infarction as well as Parkinson’s disease. Thus, the results demonstrated in this study will contribute to an exploration of a novel drug, using nanovesicles from plants, including carrots.

2021

Antimicrobial potential of probiotic cell-free and Carum copticum L. seed extracts co-nanoencapsulated in cellulose acetate fibers

The aim of this work was to co-nanoencapsulate Lactobacillus acidophilus (LCFE) and Bifidobacterium bifidum (BCFE) cell-free extract and zenyan (Carum copticum L.) seed water (ZWE) and ethanolic (ZEE) extract in electrospun cellulose acetate (CA) nanofibers and evaluate antimicrobial potential. The zeta potential, SEM image, antibacterial (MIC and MBC), and antifungal (MIC and MFC) activities were evaluated. TPC (total phenol content) of water and ethanol extract of zenyan seed were 14.05 and 136.44 mg GAE/g, respectively. A zeta potential of −40.25, −45.80, −43.71, 48.55, 35.50, 47.93, 31.50, 44.69, and −29.61 mV was found for nanofibers of pure CA (cellulose acetate), CA/LCFE, CA/BCFE, CA/ZWE, CA/ZEE, CA/LCFE/ZWE, CA/LCFE/ ZEE, CA/BCFE/ZWE, and CA/LCFE/ZEE, respectively. CA electrospun nanofiber loaded with different extracts showed nanosized diameter and uniform structure. Nanoencapsulated extracts showed considerably higher antibacterial and antifungal activity compared to free extracts. Antibacterial activity of lactobacilli cell-free extract was higher than bifidobacteria, which indicated the presence of the higher amount of antibacterial compounds in lactobacilli extract. Gram-positive bacteria (S. aureus and L. monocytogenes) had the lowest MIC and MBC of free and nanoencapsulated extracts while Gram-negatives (E. coli, S. dysenteriae, and S. enteritidis) had higher MIC and MBC. CA-coated zenyan extracts (water and ethanolic) inhibited the growth of the assayed fungi at the MIC ranging 0.25 to 0.95%. These concentrations were 1.5–2 times lower than those obtained for pure extracts. For nanoencapsulated cellfree extracts of both probiotics, the MIC values were about five times lower than the free extracts. The highest antimicrobial activity obtained for CA nanofibers contained zenyan ethanolic extract and cell-free extract of lactobacilli or bifidobacteria.

2022

Anti‐SARS‐CoV‐2 effect of extracellular vesicles released from mesenchymal stem cells

As of 10 December 2021, coronavirus disease 2019 (COVID‐19) caused by SARS‐CoV‐2 accounted for 267 million people with up to 5.3 million deaths worldwide (https://covid19.who.int). Since late 2019, much progress has been made in response to the COVID‐19 pandemic, including the rapid developments of effective vaccines and the treatment guidelines consisting of antiviral drugs, immunomodulators, and critical care support (https://covid19.who.int). However, SARS‐CoV‐2 evolves over time as its genome has a high mutation rate that leads to reasonable concerns of breakthrough infection due to immune escape and resistant strain emergence under antiviral pressure (Lipsitch et al., 2021; Szemiel et al., 2021). A newly emerging Omicron (B.1.1.529) variant rings alarms around the globe that, perhaps, the COVID‐19 war has just begun. Relentless efforts should be made to advance our knowledge and treatment regimens against COVID‐19. These included studies of mesenchymal stem cell (MSC) therapy that aimed to mitigate cytokine storm and promote tissue repair in severely ill patients with COVID‐19 pneumonia and acute respiratory distress syndrome (ARDS) (Hashemian et al., 2021; Meng et al., 2020; Zhu et al., 2021). Nevertheless, as extensively discussed in a recent review by Dr. Phillip W. Askenase of Yale University School of Medicine, the immunomodulatory and regenerative effects of MSC therapy are mediated through MSC‐derived extracellular vesicles (MSC‐EVs) (Askenase, 2020), while the use of MSC‐EVs has less safety concerns of thromboembolism, arrhythmia and malignant transformation. In this direction, MSC‐EV investigations for COVID‐19 treatment would be more appealing and undeniable if MSC‐EVs also exhibit anti‐SARS‐CoV‐2 effects. A previous study revealed that MSC‐EVs pertained antiviral activity against influenza virus in a preclinical model (Khatri et al., 2018). It is known that MSCs are highly resistant to viral infections (Wu et al., 2018), including SARS‐CoV‐2 (Avanzini et al., 2021). We, therefore, hypothesized that the EVs released from MSCs could inhibit SARS‐CoV‐2 infection.

2022

Anti-inflammatory effects of extracellular vesicles from Morchella on LPS-stimulated RAW264.7 cells via the ROS-mediated p38 MAPK signaling pathway

Morchella is a kind of important edible and medicinal fungi, which is rich in polysaccharides, enzymes, fatty acids, amino acids and other active components. Extracellular vesicles (EVs) have a typical membrane structure, and the vesicles contain some specific lipids, miRNAs and proteins, and their can deliver the contents to different cells to change their functions. The present study investigated whether Morchella produce extracellular vesicles and its anti-inflammatory effect on lipopolysaccharide (LPS)-induced RAW246.7 macrophages. The experimental results showed that Morchella produced extracellular vesicles and significantly reduced the production of nitric oxide (NO) and reactive oxygen species (ROS) in a model of LPS-induced inflammation. In addition, the expression of inflammatory factor-related genes such as inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) showed dose-dependent inhibition. Morchella extracellular vesicles also can inhibit the inflammatory response induced by LPS by inhibiting the production of ROS and reducing the phosphorylation levels of the p38 MAPK signaling pathway. These results indicate that the Morchella extracellular vesicles can be used as a potential anti-inflammatory substance in the treatment of inflammatory diseases.

2022

Analyzing Inter-Leukocyte Communication and Migration In Vitro: Neutrophils Play an Essential Role in Monocyte Activation During Swarming

Neutrophils are known to be the first responders to infection or injury. However, as inflammation progresses, other leukocytes become increasingly important in inflammation propagation, tissue reconstruction, and inflammation resolution. In recent years, there has been an increase in publications that analyze neutrophil behavior in vitro, but there remains a gap in the literature for in vitro technologies that enable quantitatively measuring interactions between different types of human leukocytes. Here, we used an in vitro platform that mimics inflammation by inducing neutrophil swarming to analyze the behavior of various leukocytes in a swarming setting. Using human peripheral blood leukocytes isolated directly from whole blood, we found that myeloid cells and lymphoid cells had different migratory behaviors. Myeloid cells, which are predominately neutrophils, exhibited swarming behavior. This behavior was not seen with lymphoid cells. We perturbed the peripheral blood leukocyte system by adding exogenous leukotriene B4 (LTB4) to the medium. Notably, only the myeloid cell compartment was significantly changed by the addition of LTB4. Additionally, LTB4 had no significant impact on myeloid cell migration during the recruitment phase of swarming. To further investigate the myeloid cell compartment, we isolated neutrophils and monocytes to analyze their interaction on the platform. We found that neutrophils increase monocyte migration toward the bioparticle clusters, as measured through speed, chemotactic index, track straightness, and swarm size. These results were confirmed with in vivo mouse experiments, where monocyte accumulation only occurred when neutrophils were present. Additionally, we found that both neutrophils and monocytes release the monocyte chemoattractant proteins CCL2 and CCL3 in the presence of Staphylococcus aureus bioparticles. Furthermore, extracellular vesicles from swarming neutrophils caused monocyte activation. These findings suggest that neutrophils play an essential role in the onset of inflammation not only by sealing off the site of infection or injury, but also by recruiting additional leukocytes to the site.

2021
Loading 0 publications...
Other
Other
Nanomedicine
Nanomedicine
Viruses
Viruses
Extracellular Vesicles
Extracellular Vesicles
DXter
DXter
EV Sample Processing
EV Sample Processing
Zenco
Zenco
Nanopore
Nanopore
Unknown
Unknown
qEV RNA Extraction Kit
qEV RNA Extraction Kit
qEV Magnetic Concentration Kit
qEV Magnetic Concentration Kit
qEV Concentration Kit
qEV Concentration Kit
qEV Legacy Columns
qEV Legacy Columns
qEV Gen 2 Columns
qEV Gen 2 Columns
qNano
qNano
Exoid
Exoid
Automatic Fraction Collector (AFC) V2
Automatic Fraction Collector (AFC) V2
Automatic Fraction Collector (AFC) V1
Automatic Fraction Collector (AFC) V1
Other
Other
qEV
qEV
TRPS
TRPS
Bioprocessing
Bioprocessing
Lipid Nanoparticle
Lipid Nanoparticle
Platelet
Platelet
Vaccine
Vaccine
Liposome
Liposome
MicroRNA
MicroRNA
Zeta Potential
Zeta Potential