Ascorbate peroxidase‐mediated in situ labelling of proteins in secreted exosomes

Extracellular Vesicles

The extracellular vesicle exosome mediates intercellular communication by transporting macromolecules such as proteins and ribonucleic acids (RNAs). Determining cargo contents with high accuracy will help decipher the biological processes that exosomes mediate in various contexts. Existing methods for probing exosome cargo molecules rely on a prior exosome isolation procedure. Here we report an in situ labelling approach for exosome cargo identification, which bypasses the exosome isolation steps. In this methodology, a variant of the engineered ascorbate peroxidase APEX, fused to an exosome cargo protein such as CD63, is expressed specifically in exosome-generating vesicles in live cells or in secreted exosomes in the conditioned medium, to induce biotinylation of the proteins in the vicinity of the APEX variant for a short period of time. Mass spectrometry analysis of the proteins biotinylated by this approach in exosomes secreted by kidney proximal tubule-derived cells reveals that oxidative stress can cause ribosomal proteins to accumulate in an exosome subpopulation that contains the CD63-fused APEX variant.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

No items found.
No items found.
No items found.