Publications

The latest Tunable Resistive Pulse Sensing (TRPS) and qEV Isolation publications.

Select year
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Recent Publications

Involvement of the Choroid Plexus in the Pathogenesis of Niemann-Pick Disease Type C

Niemann-Pick type C (NPC) disease, sometimes called childhood Alzheimer's, is a rare neurovisceral lipid storage disease with progressive neurodegeneration leading to premature death. The disease is caused by loss-of-function mutations in the Npc1 or Npc2 gene which both result into lipid accumulation in the late endosomes and lysosomes. Since the disease presents with a broad heterogenous clinical spectrum, the involved disease mechanisms are still incompletely understood and this hampers finding an effective treatment. As NPC patients, who carry NPC1 mutations, have shown to share several pathological features with Alzheimer's disease (AD) and we and others have previously shown that AD is associated with a dysfunctionality of the blood-cerebrospinal fluid (CSF) barrier located at choroid plexus, we investigated the functionality of this latter barrier in NPC1 pathology. Using NPC1-/- mice, we show that despite an increase in inflammatory gene expression in choroid plexus epithelial (CPE) cells, the blood-CSF barrier integrity is not dramatically affected. Interestingly, we did observe a massive increase in autophagosomes in CPE cells and enlarged extracellular vesicles (EVs) in CSF upon NPC1 pathology. Additionally, we revealed that these EVs exert toxic effects on brain tissue, in vitro as well as in vivo. Moreover, we observed that EVs derived from the supernatant of NPC1-/- choroid plexus explants are able to induce typical brain pathology characteristics of NPC1-/-, more specifically microgliosis and astrogliosis. Taken together, our data reveal for the first time that the choroid plexus and CSF EVs might play a role in the brain-related pathogenesis of NPC1.

2021

Isolation and Characterization of Urinary Extracellular Vesicles from Healthy Donors and Patients with Castration-Resistant Prostate Cancer

Prostate cancer (PCa) is the most commonly diagnosed malignancy among men in developed countries. The five-year survival rate for men diagnosed with early-stage PCa is approximately 100%, while it is less than 30% for castration-resistant PCa (CRPC). Currently, the detection of prostate-specific antigens as biomarkers for the prognosis of CRPC is criticized because of its low accuracy, high invasiveness, and high false-positive rate. Therefore, it is important to identify new biomarkers for prediction of CRPC progression. Extracellular vesicles (EVs) derived from tumors have been highlighted as potential markers for cancer diagnosis and prognosis. Specifically, urinary EVs directly reflect changes in the pathophysiological conditions of the urogenital system because it is exposed to prostatic secretions. Thus, detecting biomarkers in urinary EVs provides a promising approach for performing an accurate and non-invasive liquid biopsy for CPRC. In this study, we effectively isolated urinary EVs with low protein impurities using size-exclusion chromatography combined with ultrafiltration. After EV isolation and characterization, we evaluated the miRNAs in urinary EVs from healthy donors and patients with CRPC. The results indicated that miRNAs (miR-21-5p, miR-574-3p, and miR-6880-5p) could be used as potential biomarkers for the prognosis of CRPC. This analysis of urinary EVs contributes to the fast and convenient prognosis of diseases, including CRPC, in the clinical setting.

2022

Investigation into the Photochemical Properties of Methylene Blue-Immobilized Hydroxyapatite Nanoparticles for Theranostic Application

In the biomedical field, there has been a requirement for developing theranostic nanomaterials with higher biosafety, leading to both diagnosis and therapy. Methylene blue (MB+) is an organic dye with both photoluminescence (PL) and photosensitization abilities to generate singlet oxygen (1O2). However, MB+ easily loses its generation ability by hydrogen reduction in vivo or by forming aggregates. In this study, MB+ immobilized on biocompatible hydroxyapatite (HA) nanoparticles was applied for the bifunctions of efficient PL and photosensitization. The MB+-immobilized HA nanoparticles (MH) formed aggregates with sizes of 80–100 nm in phosphate buffer (PB). The generation amount and efficiency of 1O2 from the nanoparticles in PB seem to depend on the immobilized MB+ amount and the percentage of the monomer, respectively. Considering the larger immobilized amount and percentage of the MB+ monomer, it was found that there was MH with the lower generation amount and efficiency of 1O2 to exhibit the highest PL intensity. The photofunctional measurement of MB+ revealed the state of MB+ molecules on the HA surface, and it was suggested that the MB+ molecules immobilized on the MH surface would form more hydrogen bonds to change their excitation states. In the cellular experiments, the Hela cancer cells reacted with the nanoparticles and showed red-color PL, indicating cellular imaging. Furthermore, the adherent cell coverage decreased by 1O2 generation, indicating the importance of the immobilization amount of the MB+ monomer. Therefore, theranostic nanomaterials with biosafety were successfully synthesized to show two photofunctions, which provide both cellular imaging and photodynamic therapy by the nanohybrid system between HA and MB+.

2023

Investigating the consistency of extracellular vesicle production from breast cancer subtypes using CELLine adherent bioreactors

Extracellular vesicle (EV) research has grown rapidly in recent years, largely due to the potential use of EVs as liquid biopsy biomarkers or therapeutics. However, in‐depth characterisation and validation of EVs produced using conventional in vitro cultures can be challenging due to the large area of cell monolayers and volumes of culture media required. To overcome this obstacle, multiple bioreactor designs have been tested for EV production with varying success, but the consistency of EVs produced over time in these systems has not been reported previously. In this study, we demonstrate that several breast cancer cell lines of different subtypes can be cultured simultaneously in space, resource, and time efficient manner using CELLine AD 1000 systems, allowing the consistent production of vast amounts of EVs for downstream experimentation. We report an improved workflow used for inoculating, maintaining, and monitoring the bioreactors, their EV production, and the characterisation of the EVs produced. Lastly, our proteomic analyses of the EVs produced throughout the lifetime of the bioreactors show that core EV‐associated proteins are relatively consistent, with few minor variations over time, but that tracking the production of EVs is a convenient method to indirectly monitor the bioreactor and consistency of the yielded EVs. These findings will aid future studies requiring the simultaneous production of large amounts of EVs from several cell lines of different subtypes of a disease and other EV biomanufacturing applications.

2022

Intravesicular Genomic DNA Enriched by Size Exclusion Chromatography Can Enhance Lung Cancer Oncogene Mutation Detection Sensitivity

Extracellular vesicles (EVs) are cell-derived structures surrounded by a lipid bilayer that carry RNA and DNA as potential templates for molecular diagnostics, e.g., in cancer genotyping. While it has been established that DNA templates appear on the outside of EVs, no consensus exists on which nucleic acid species inside small EVs (<200 nm, sEVs) are sufficiently abundant and accessible for developing genotyping protocols. We investigated this by extracting total intravesicular nucleic acid content from sEVs isolated from the conditioned cell medium of the human NCI-H1975 cell line containing the epidermal growth factor (EGFR) gene mutation T790M as a model system for non-small cell lung cancer. We observed that mainly short genomic DNA (<35–100 bp) present in the sEVs served as a template. Using qEV size exclusion chromatography (SEC), significantly lower yield and higher purity of isolated sEV fractions were obtained as compared to exoEasy membrane affinity purification and ultracentrifugation. Nevertheless, we detected the EGFR T790M mutation in the sEVs’ lumen with similar sensitivity using digital PCR. When applying SEC-based sEV separation prior to cell-free DNA extraction on spiked human plasma samples, we found significantly higher mutant allele frequencies as compared to standard cell-free DNA extraction, which in part was due to co-purification of circulating tumor DNA. We conclude that intravesicular genomic DNA can be exploited next to ctDNA to enhance EGFR T790M mutation detection sensitivity by adding a fast and easy-to-use sEV separation method, such as SEC, upstream of standard clinical cell-free DNA workflows.

2022

Insights into epithelial cell senescence from transcriptome and secretome analysis of human oral keratinocytes

Senescent cells produce chronic inflammation that contributes to the diseases and debilities of aging. How this process is orchestrated in epithelial cells, the origin of human carcinomas, is poorly understood. We used human normal oral keratinocytes (NOKs) to elucidate senescence programs in a prototype primary mucosal epithelial cell that senesces spontaneously. While NOKs exhibit several typical facets of senescence, they also display distinct characteristics. These include expression of p21WAF1/CIP1 at early passages, making this common marker of senescence unreliable in NOKs. Transcriptome analysis by RNA-seq revealed specific commonalities with and differences from cancer cells, explicating the tumor avoidance role of senescence. Repression of DNA repair genes that correlated with downregulation of E2F1 mRNA and protein was observed for two donors; a divergent result was seen for the third. Using proteomic profiling of soluble (non-vesicular) and extracellular vesicle (EV) associated secretions, we propose additions to the senescence associated secretory phenotype, including HSP60, which localizes to the surface of EVs. Finally, EVs from senescent NOKs activate interferon pathway signaling in THP-1 monocytes in a STING-dependent manner and associate with mitochondrial and nuclear DNA. Our results highlight senescence changes in epithelial cells and how they might contribute to chronic inflammation and age-related diseases.

2021

Interleukin-1β released from macrophages stimulated with indium tin oxide nanoparticles induces epithelial-mesenchymal transition in A549 cells

Indium tin oxide (ITO) nanoparticles triggered the release of IL-1β from macrophages, followed by the significant induction of epithelial-mesenchymal transition (EMT) in alveolar epithelial cells. Epithelial–mesenchymal transition (EMT) is a crucial process by which epithelial cells lose polarity and acquire migratory mesenchymal properties, eventually leading to tissue fibrosis and cancer. Indium tin oxide (ITO) is one of the most widely manufactured materials with broad applications, such as flat panel displays, touch panels, and solar panels. Whereas cases of indium-related lung disease have been reported worldwide, the effects of ITO on the progression of EMT are completely unknown. In the current study, we explored whether ITO nanoparticles (NPs) induce EMT in human alveolar epithelial cells (A549 cells). We found that although ITO NPs did not directly induce EMT in A549 cells, a conditioned medium (CM) obtained from THP-1-derived macrophages (dTHP-1 cells) stimulated with ITO NPs induced morphological changes, high motility, and EMT progression in A549 cells. After co-culture with ITO NP-treated dTHP-1 cells, A549 cells exhibited morphological and molecular signatures of EMT. Furthermore, we identified that interleukin-1β (IL-1β) produced via the activation of nod-like receptor protein 3 (NLRP3) inflammasome is an ITO NP-mediated EMT inducer based on the results of cytokine array as well as cellular physiological and biochemical analysis. Our results also indicated that the IL-1β-mediated EMT occurs not only in A549 cells, but also in bronchial epithelial cells (BEAS-2B cells) and primary human alveolar epithelial cells (hAEC). In addition, a neutralizing antibody against IL-1 receptor can effectively inhibit the induction of EMT caused by CM from ITO NP-treated dTHP-1 cells. Taken together, these findings suggest that IL-1β is released from macrophages stimulated with ITO NPs and is able to induce EMT progression in A549 cells, thereby potentially triggering the genesis and development of pulmonary fibrosis.

2022

Inhibition of neutral sphingomyelinase 2 reduces extracellular vesicle release from neurons, oligodendrocytes, and activated microglial cells following acute brain injury

Extracellular Vesicles (EVs) are implicated in the spread of pathogenic proteinsin a growing number of neurological diseases. Given this, there is rising interest in developing inhibitors of Neutral Sphingomyelinase 2 (nSMase2), an enzyme critical in EV biogenesis. Our group recently discovered phenyl(R)-(1-(3-(3,4-dimethoxyphenyl)-2,6-dimethylimidazo[1,2-b]pyridazin-8-yl)pyrrolidin-3-yl)carbamate (PDDC), the first potent, selective, orally-available, and brain-penetrable nSMase2 inhibitor, capable of dose-dependently reducing EVs release in vitro and in vivo. Herein, using multiplexed Surface Plasmon Resonance imaging (SPRi), we evaluated which brain cell-derived EVs were affected by PDDC following acute brain injury. Mice were fed PDDC-containing chow at doses which gave steady PDDC brain exposures exceeding its nSMase2 IC50. Mice were then administered an intra-striatal IL-1β injection and two hours later plasma and brain were collected. IL-1β injection significantly increased striatal nSMase2 activity which was completely normalized by PDDC. Using SPRi, we found that IL-1β-induced injury selectively increased plasma levels of CD171 + and PLP1 + EVs; this EV increase was normalized by PDDC. In contrast, GLAST1 + EVs were unchanged by IL-1β or PDDC. IL-1β injection selectively increased EVs released from activated versus non-activated microglia, indicated by the CD11b+/IB4 + ratio. The increase in EVs from CD11b + microglia was dramatically attenuated with PDDC. Taken together, our data demonstrate that following acute injury, brain nSMase2 activity is elevated. EVs released from neurons, oligodendrocytes, and activated microglial are increased in plasma and inhibition of nSMase2 with PDDC reduced these IL-1β-induced changes implicating nSMase2 inhibition as a therapeutic target for acute brain injury.

2021

Influence of extracellular nanovesicles derived from adipose-derived stem cells on nucleus pulposus cell from patients with intervertebral disc degeneration

An increasing number of individuals are suffering from lower back and neck pain caused by intervertebral disc degeneration each year. Although the application of mesenchymal stem cells (MSCs) has provided desirable results in the treatment of intervertebral disc degeneration, there are multiple risks associated with the directed application of MSCs. An increasing number of studies have suggested that stem cells, through the release of extracellular nanovesicles, have vital functions in tissue regeneration and repair with low risk. The present study investigated the effect of extracellular nanovesicles derived from adipose-derived stem cells (ADSCs) on nucleus pulposus (NP) cells from patients with intervertebral disc degeneration. Human NP cells were obtained from patients with intervertebral disc degeneration undergoing surgical procedures in addition to ADSCs from liposuction patients. ADSC-derived extracellular nanovesicles were isolated and characterized. The differentiation and biological activity of NP cells cultured with or without ADSC-derived extracellular nanovesicles were assessed and inflammatory factors and intervertebral disc degeneration-associated markers were also measured. The results indicated that extracellular nanovesicles derived from ADSCs increased the migration and proliferation of NP cells and inhibited inflammatory activity, suggesting their utility for the treatment of intervertebral disc degeneration.

2021

Influence of Anti-Glaucoma Drugs on Uptake of Extracellular Vesicles by Trabecular Meshwork Cells

BACKGROUND: Extracellular vesicles (EVs) are capable of manipulating cellular functions for the maintenance of biological homeostasis and disease progression, such as in glaucoma disease. These nano-particles carry a net negative surface charge under physiological conditions that can contribute to EVs:EVs interaction and their uptake by target cells. PURPOSE: To investigate the effect of glaucoma drugs on EVs physicochemical characters and the implications for their uptake by trabecular meshwork (TM) cells. METHODS: TM or non-pigmented ciliary epithelium (NPCE) cells derived EVs were incubated with commercial anti-glaucoma formulation, Timolol maleate, Brinzolamide or Benzalkonium Cl and their size and zeta potential (ZP) and physical interactions of EVs derived from NPCE cells and TM cells were evaluated. The contribution of EVs interactions to up-take by TM cells was examined using fluorescence-activated cell sorting. RESULTS: EVs size and ZP were affected by the ionic strength of the buffer rather than EVs type. Commercial glaucoma eye drops, including β-blocker, α-2-agonist and prostaglandin analogs, reduced NPCE EVs ZP, whereas exposure of EVs to carbonic anhydrase inhibitor caused an increase in the ZP. A correlation was found between increased ZP values and increased NPCE EVs uptake by TM cells. We were able to show that Benzalkonium chloride stands behind this ZP effect and not Timolol or Brinzolamide. CONCLUSION: Altogether, our findings demonstrate that EVs size, surface membrane charge, and ionic strength of the surrounding have an impact on EVs:EVs interactions, which affect the uptake of NPCE EVs by TM cells.

2020

Induction of Peptide-specific CTL Activity and Inhibition of Tumor Growth Following Immunization with Nanoparticles Coated with Tumor Peptide-MHC-I Complexes

Tumor peptides associated with MHC class I molecules or their synthetic variants have attracted great attention for their potential use as vaccines to induce tumor-specific CTLs. However, the outcome of clinical trials of peptide-based tumor vaccines has been disappointing. There are various reasons for this lack of success, such as difficulties in delivering the peptides specifically to professional Ag-presenting cells, short peptide half-life in vivo, and limited peptide immunogenicity. We report here a novel peptide vaccination strategy that efficiently induces peptide-specific CTLs. Nanoparticles (NPs) were fabricated from a biodegradable polymer, poly(D,L-lactic-co-glycolic acid), attached to H-2Kb molecules, and then the natural peptide epitopes associated with the H-2Kb molecules were exchanged with a model tumor peptide, SIINFEKL (OVA257-268). These NPs were efficiently phagocytosed by immature dendritic cells (DCs), inducing DC maturation and activation. In addition, the DCs that phagocytosed SIINFEKL-pulsed NPs potently activated SIINFEKL-H-2Kb complex-specific CD8+ T cells via cross-presentation of SIINFEKL. In vivo studies showed that intravenous administration of SIINFEKL-pulsed NPs effectively generated SIINFEKL-specific CD8+ T cells in both normal and tumor-bearing mice. Furthermore, intravenous administration of SIINFEKL-pulsed NPs into EG7.OVA tumor-bearing mice almost completely inhibited the tumor growth. These results demonstrate that vaccination with polymeric NPs coated with tumor peptide-MHC-I complexes is a novel strategy for efficient induction of tumor-specific CTLs.

2021

Induction of apoptosis in human colorectal cancer cells by nanovesicles from fingerroot (Boesenbergia rotunda (L.) Mansf.)

Colorectal cancer is the leading cause of cancer-related deaths worldwide, warranting the urgent need for a new treatment option. Plant-derived nanovesicles containing bioactive compounds represent new therapeutic avenues due to their unique characteristics as natural nanocarriers for bioactive molecules with therapeutic effects. Recent evidence has revealed potential anticancer activity of bioactive compounds from Boesenbergia rotunda (L.) Mansf. (fingerroot). However, the effect and the underlying mechanisms of fingerroot-derived nanovesicles (FDNVs) against colorectal cancer are still unknown. We isolated the nanovesicles from fingerroot and demonstrated their anticancer activity against two colorectal cancer cell lines, HT-29 and HCT116. The IC50 values were 63.9 ± 2.4, 57.8 ± 4.1, 47.8 ± 7.6 μg/ml for HT-29 cells and 57.7 ± 6.6, 47.2 ± 5.2, 34 ± 2.9 μg/ml for HCT116 cells at 24, 48, and 72 h, respectively. Interestingly, FDNVs were not toxic to a normal colon epithelial cell line, CCD 841 CoN. FDNVs exhibited selective uptake by the colorectal cancer cell lines but not the normal colon epithelial cell line. Moreover, dose- and time-dependent FDNV-induced apoptosis was only observed in the colorectal cancer cell lines. In addition, reactive oxygen species levels were substantially increased in colorectal cancer cells, but total glutathione decreased after treatment with FDNVs. Our results show that FDNVs exhibited selective anticancer activity in colorectal cancer cell lines via the disruption of intracellular redox homeostasis and induction of apoptosis, suggesting the utility of FDNVs as a novel intervention for colorectal cancer patients.

2022

Importance of extracellular vesicle secretion at the blood–cerebrospinal fluid interface in the pathogenesis of Alzheimer’s disease

Increasing evidence indicates that extracellular vesicles (EVs) play an important role in the pathogenesis of Alzheimer’s disease (AD). We previously reported that the blood–cerebrospinal fluid (CSF) interface, formed by the choroid plexus epithelial (CPE) cells, releases an increased amount of EVs into the CSF in response to peripheral inflammation. Here, we studied the importance of CP-mediated EV release in AD pathogenesis. We observed increased EV levels in the CSF of young transgenic APP/PS1 mice which correlated with high amyloid beta (Aβ) CSF levels at this age. The intracerebroventricular (icv) injection of Aβ oligomers (AβO) in wild-type mice revealed a significant increase of EVs in the CSF, signifying that the presence of CSF-AβO is sufficient to induce increased EV secretion. Using in vivo, in vitro and ex vivo approaches, we identified the CP as a major source of the CSF-EVs. Interestingly, AβO-induced, CP-derived EVs induced pro-inflammatory effects in mixed cortical cultures. Proteome analysis of these EVs revealed the presence of several pro-inflammatory proteins, including the complement protein C3. Strikingly, inhibition of EV production using GW4869 resulted in protection against acute AβO-induced cognitive decline. Further research into the underlying mechanisms of this EV secretion might open up novel therapeutic strategies to impact the pathogenesis and progression of AD.

2021

Importance of between and within Subject Variability in Extracellular Vesicle Abundance and Cargo when Performing Biomarker Analyses

Small extracellular vesicles (sEV) have emerged as a potential rich source of biomarkers in human blood and present the intriguing potential for a 'liquid biopsy' to track disease and the effectiveness of interventions. Recently, we have further demonstrated the potential for EV derived biomarkers to account for variability in drug exposure. This study sought to evaluate the variability in abundance and cargo of global and liver-specific circulating sEV, within (diurnal) and between individuals in a cohort of healthy subjects (n = 10). We present normal ranges for EV concentration and size and expression of generic EV protein markers and the liver-specific asialoglycoprotein receptor 1 (ASGR1) in samples collected in the morning and afternoon. EV abundance and cargo was generally not affected by fasting, except CD9 which exhibited a statistically significant increase (p = 0.018). Diurnal variability was observed in the expression of CD81 and ASGR1, which significantly decreased (p = 0.011) and increased (p = 0.009), respectively. These results have potential implications for study sampling protocols and normalisation of biomarker data when considering the expression of sEV derived cargo as a biomarker strategy. Specifically, the novel finding that liver-specific EVs exhibit diurnal variability in healthy subjects should have broad implications in the study of drug metabolism and development of minimally invasive biomarkers for liver disease.

2021
Loading 0 publications...
Other
Other
Nanomedicine
Nanomedicine
Viruses
Viruses
Extracellular Vesicles
Extracellular Vesicles
DXter
DXter
EV Sample Processing
EV Sample Processing
Zenco
Zenco
Nanopore
Nanopore
Unknown
Unknown
qEV RNA Extraction Kit
qEV RNA Extraction Kit
qEV Magnetic Concentration Kit
qEV Magnetic Concentration Kit
qEV Concentration Kit
qEV Concentration Kit
qEV Legacy Columns
qEV Legacy Columns
qEV Gen 2 Columns
qEV Gen 2 Columns
qNano
qNano
Exoid
Exoid
Automatic Fraction Collector (AFC) V2
Automatic Fraction Collector (AFC) V2
Automatic Fraction Collector (AFC) V1
Automatic Fraction Collector (AFC) V1
Other
Other
qEV
qEV
TRPS
TRPS
Bioprocessing
Bioprocessing
Lipid Nanoparticle
Lipid Nanoparticle
Platelet
Platelet
Vaccine
Vaccine
Liposome
Liposome
MicroRNA
MicroRNA
Zeta Potential
Zeta Potential