Publications
The latest Tunable Resistive Pulse Sensing (TRPS) and qEV Isolation publications.
Recent Publications
Mechanisms governing the therapeutic effect of mesenchymal stromal cell-derived extracellular vesicles: A scoping review of preclinical evidence
Compelling evidence supports the therapeutic benefit of extracellular vesicles (EVs). EVs are nanostructures with a lipid bilayer membrane that are secreted by multiple cells, including mesenchymal stromal cells (MSCs), as means of cellular communication. MSC-EVs, resembling their MSC origin, carry protected immunomodulatory and pro-regenerative cargoes to targeted neighboring or distant cells and tissues. Though treatments focused on MSC-EVs have emerged as greatly versatile approaches to modulate multiple inflammatory-related conditions, crucial concerns, including the possibility of increasing therapeutic outcomes by pre-conditioning parental MSCs or engineering derived EVs and clarification of the most relevant mechanisms of action, remain. Here, we summarize the large amount of preclinical research surrounding the modulation of beneficial effects by MSC-EVs.
Mechanical strain drives exosome production, function, and miRNA cargo in C2C12 muscle progenitor cells
Mesenchymal stem cells (MSCs) have been proven to promote tissue repair. However, concerns related to their clinical application and regulatory hurdles remain. Recent data has demonstrated the proregenerative secretome of MSCs can result in similar effects in the absence of the cells themselves. Within the secretome, exosomes have emerged as a promising regenerative component. Exosomes, which are nanosized lipid vesicles secreted by cells, encapsulate micro-RNA (miRNA), RNA, and proteins that drive MSCs regenerative potential with cell specific content. As such, there is an opportunity to optimize the regenerative potential of MSCs, and thus their secreted exosome fraction, to improve clinical efficacy. Exercise is one factor that has been shown to improve muscle progenitor cell function and regenerative potential. However, the effect of exercise on MSC exosome content and function is still unclear. To address this, we used an in vitro culture system to evaluate the effects of mechanical strain, an exercise mimetic, on C2C12 (muscle progenitor cell) exosome production and proregenerative function. Our results indicate that the total exosome production is increased by mechanical strain and can be regulated with different tensile loading regimens. Furthermore, we found that exosomes from mechanically stimulated cells increase proliferation and myogenic differentiation of naïve C2C12 cells. Lastly, we show that exosomal miRNA cargo is differentially expressed following strain. Gene ontology mapping suggests positive regulation of bone morphogenetic protein signaling, regulation of actin-filament-based processes, and muscle cell apoptosis may be at least partially responsible for the proregenerative effects of exosomes from mechanically stimulated C2C12 muscle progenitor cells.
Mechanical Stimuli such as Shear Stress and Piezo1 Stimulation Generate Red Blood Cell Extracellular Vesicles
Abstract Circulating red blood cell extracellular vesicles (RBC-EVs) are a promising biomarker for vascular health. However, generating, isolating, and characterizing physiologically relevant RBC-EVs with sufficient yield and purity for biological studies is non-trivial. Here, we present and rigorously characterize an in vitro model to mimic RBC-EV production during shear stress via mechanosensitive piezo1 ion channel stimulation. We optimize our RBC-EV isolation protocol to minimize hemolysis, maximize RBC-EV yield and purity, and improve the ease of EV characterization. RBC-EV purity was measured by quantifying protein (e.g., particles/ μ g), large particle (e.g., protein aggregates), and platelet EV contamination. This study compared RBC-EV isolation performance using membrane-based affinity (e.g., exoEasy), ultrafiltration (e.g., Amicon Ultra-15), and ultracentrifugation, with and without size exclusion chromatography purification. We found that treating 6% hematocrit with 10 μ M piezo1-agonist yoda1 for 30 minutes and isolating RBC-EVs using ultracentrifugation minimized RBC hemolysis and maximized RBC-EV yield (~10 12 particles/mL) and purity, provided the most consistent RBC-EV preparations, and improved ease of RBC-EV characterization. Our pressure myography experiments suggest that co-isolated protein contaminants, but not piezo1 RBC-EVs, induce rapid mouse carotid artery vasodilation. These results underscore the importance of characterizing EV purity for biological experiments. The standardized methods outlined here enable mechanistic studies of how RBC-EVs generated in physiological flow affect vascular response.
Measuring particle size distribution and mass concentration of nanoplastics and microplastics: addressing some analytical challenges in the sub-micron size range
Hypothesis The implementation of the proposal from the European Chemical Agency (ECHA) to restrict the use of nanoplastics (NP) and microplastics (MP) in consumer products will require reliable methods to perform size and mass-based concentration measurements. Analytical challenges arise at the nanometre to micrometre interface, e.g., 800 nm–10 µm, where techniques applicable at the nanometre scale reach their upper limit of applicability and approaches applicable at the micrometre scale must be pushed to their lower limits of detection. Experiments Herein, we compared the performances of nine analytical techniques by measuring the particle size distribution and mass-based concentration of polystyrene mixtures containing both nano and microparticles, with the educational aim to underline applicability and limitations of each technique. Findings Light scattering-based measurements do not have the resolution to distinguish multiple populations in polydisperse samples. Nanoparticle tracking analysis (NTA), nano-flowcytometry (nFCM) and asymmetric flow field flow fractionation hyphenated with multiangle light scattering (AF4-MALS) cannot measure particles in the micrometre range. Static light scattering (SLS) is not able to accurately detect particles below 200 nm, and similarly to transmission electron microscopy (TEM) and flow cytometry (FCM), is not suitable for accurate mass-based concentration measurements. Alternatives for high-resolution sizing and concentration measurements in the size range between 60 nm and 5 µm are tunable resistive pulse sensing (TRPS) and centrifugal liquid sedimentation (CLS), that can bridge the gap between the nanometre and micrometre range.
Measuring particle concentration of multimodal synthetic reference materials and extracellular vesicles with orthogonal techniques: Who is up to the challenge?
The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess their quality, for example, resulting from their production and isolation methods. The community is gradually becoming aware of the need to combine multiple orthogonal techniques to perform a robust characterization of complex biological samples. Three pillars of critical quality attribute characterization of EVs are sizing, concentration measurement and phenotyping. The repeatable measurement of vesicle concentration is one of the key‐challenges that requires further efforts, in order to obtain comparable results by using different techniques and assure reproducibility. In this study, the performance of measuring the concentration of particles in the size range of 50–300 nm with complementary techniques is thoroughly investigated in a step‐by step approach of incremental complexity. The six applied techniques include multi‐angle dynamic light scattering (MADLS), asymmetric flow field flow fractionation coupled with multi‐angle light scattering (AF4‐MALS), centrifugal liquid sedimentation (CLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), and high‐sensitivity nano flow cytometry (nFCM). To achieve comparability, monomodal samples and complex polystyrene mixtures were used as particles of metrological interest, in order to check the suitability of each technique in the size and concentration range of interest, and to develop reliable post‐processing data protocols for the analysis. Subsequent complexity was introduced by testing liposomes as validation of the developed approaches with a known sample of physicochemical properties closer to EVs. Finally, the vesicles in EV containing plasma samples were analysed with all the tested techniques. The results presented here aim to shed some light into the requirements for the complex characterization of biological samples, as this is a critical need for quality assurance by the EV and regulatory community. Such efforts go with the view to contribute to both, set‐up reproducible and reliable characterization protocols, and comply with the Minimal Information for Studies of Extracellular Vesicles (MISEV) requirements.
Maternal Th17/Treg Cytokines and Small Extracellular Vesicles in Plasma as Potential Biomarkers for Preeclampsia
Preeclampsia is one of the most serious pregnancy complications. It may be caused by immunological changes in the early placental microenvironment. The contents of small EVs may serve as biomarkers of pregnancy complications. Evidence suggests that the balance between T helper 17 (Th17) and regulatory T (Treg) cells are critical for preventing preeclampsia. The study recruited 39 pregnant women with preeclampsia and 127 healthy pregnant women. We assessed the levels of both Th17 and Treg cytokines (IL-10, IL-17, IL-21, IL-22, and TGF-β) in their plasma and small EVs. We found significant differences in the levels of all cytokines in the plasma between the two groups during the second trimester. We also observed significant differences between the two groups in the levels of EV-encapsulated cytokines IL-21, IL-22, and TGF-β, as well as in total small EVs, during the second trimester. The ROC analysis showed that the classification efficiency (AUC) of TGF-β in small EVs was 0.81. TGF-β had the best discriminant ability of all the single EV biomarkers tested, the cross-validation of the accuracy was 0.89. Th17 and Treg cytokines in plasma and small EVs may contribute to maternal immune activation and clarify the potential mechanisms of small EVs and cytokines in preeclampsia.
Mass Spectrometry Identification of Biomarkers in Extracellular Vesicles From Plasmodium vivax Liver Hypnozoite Infections
Latent liver stages termed hypnozoites cause relapsing Plasmodium vivax malaria infection and represent a major obstacle in the goal of malaria elimination. Hypnozoites are clinically undetectable, and presently, there are no biomarkers of this persistent parasite reservoir in the human liver. Here, we have identified parasite and human proteins associated with extracellular vesicles (EVs) secreted from in vivo infections exclusively containing hypnozoites. We used P. vivax-infected human liver-chimeric (huHEP) FRG KO mice treated with the schizonticidal experimental drug MMV048 as hypnozoite infection model. Immunofluorescence-based quantification of P. vivax liver forms showed that MMV048 removed schizonts from chimeric mice livers. Proteomic analysis of EVs derived from FRG huHEP mice showed that human EV cargo from infected FRG huHEP mice contain inflammation markers associated with active schizont replication and identified 66 P. vivax proteins. To identify hypnozoite-specific proteins associated with EVs, we mined the proteome data from MMV048-treated mice and performed an analysis involving intragroup and intergroup comparisons across all experimental conditions followed by a peptide compatibility analysis with predicted spectra to warrant robust identification. Only one protein fulfilled this stringent top-down selection, a putative filamin domain-containing protein. This study sets the stage to unveil biological features of human liver infections and identify biomarkers of hypnozoite infection associated with EVs.
MAM-STAT3-induced upregulation of mitochondrial Ca+2 causes immunosenescence in patients with type A mandibuloacral dysplasia
Abstract Homozygous lamina/c p.R527C mutations result in severe mandibuloacral dysplasia (MAD) and progeroid syndrome, but the underlying molecular pathology remains unknown. Here, we report on three patients with MAD, all displaying severe systemic inflammaging and characterized the major molecular pathways involved in the manifestation of this disease. Analysis of induced pluripotent stem cell (IPSC)-derived mesenchymal stem cells (MAD-iMSCs) obtained from the patients revealed that increased mitochondrial Ca +2 loading was the root cause of lost mitochondrial membrane potential, abnormal fission/fusion and fragmentation, which then participated in inflammaging by inducing the inflammasome. These alterations in Ca +2 homeostasis were mediated by signal transducer and activator of transcription 3 (STAT3), which is located on the mitochondrial associated membrane (MAM). STAT3 function could be rescued by treatment with clinically-approved IL-6 blockers, or by correction of R527C mutations. In addition, extracellular vesicles (EVs) obtained from MAD-iMSCs displayed reduced immunomodulatory function, being unable to rescue bleomycin-induced lung fibrosis and triggering mitochondrial dysfunction, senescence, and fibrosis in healthy cells. Our results provide new insights into the pathology of complex lamin-associated MAD with systemic immunosenescence, and suggest that targeting defective mitochondrial Ca +2 homeostasis may represent a promising novel therapy for this condition.
Macropinocytosis-Inducible Extracellular Vesicles Modified with Antimicrobial Protein CAP18-Derived Cell-Penetrating Peptides for Efficient Intracellular Delivery
The antimicrobial protein CAP18 (approximate molecular weight: 18 000), which was first isolated from rabbit granulocytes, comprises a C-terminal fragment that has negatively charged lipopolysaccharide binding activity. In this study, we found that CAP18 (106-121)-derived (sC18)2 peptides have macropinocytosis-inducible biological functions. In addition, we found that these peptides are highly applicable for use as extracellular vesicle (exosomes, EV)-based intracellular delivery, which is expected to be a next-generation drug delivery carrier. Here, we demonstrate that dimerized (sC18)2 peptides can be easily introduced on EV membranes when modified with a hydrophobic moiety, and that they show high potential for enhanced cellular uptake of EVs. By glycosaminoglycan-dependent induction of macropinocytosis, cellular EV uptake in targeted cells was strongly increased by the peptide modification made to EVs, and intriguingly, our herein presented technique is efficiently applicable for the cytosolic delivery of the biologically cell-killing functional toxin protein, saporin, which was artificially encapsulated in the EVs by electroporation, suggesting a useful technique for EV-based intracellular delivery of biofunctional molecules.
Longitudinal characterization of circulating extracellular vesicles and small RNA during simian immunodeficiency virus infection and antiretroviral therapy
ABSTRACT Objectives Latent infection by human immunodeficiency virus (HIV) hinders viral eradication despite effective antiretroviral treatment (ART), Amongst proposed contributors to viral latency are cellular small RNAs that have also been proposed to shuttle between cells in extracellular vesicles (EVs). Thus, we profiled EV small RNAs during different infection phases to understand the potential relationship between these EV-associated small RNAs and viral infection. Design A well characterized simian immunodeficiency virus (SIV)/macaque model of HIV was used to profile EV-enriched blood plasma fractions harvested during pre-infection, acute infection, latent infection/ART treatment, and rebound after ART interruption. Methods Measurement of EV concentration, size distribution, and morphology was complemented with qPCR array for small RNA expression, followed by individual qPCR validations. Iodixanol density gradients were used to separate EV subtypes and virions. Results Plasma EV particle counts correlated with viral load and peaked during acute infection. However, SIV gag RNA detection showed that virions did not fully explain this peak. EV microRNAs miR-181a, miR-342-3p, and miR-29a decreased with SIV infection and remained downregulated in latency. Interestingly, small nuclear RNA U6 had a tight association with viral load peak. Conclusions This study is the first to monitor how EV concentration and EV small RNA expression change dynamically in acute viral infection, latency, and rebound in a carefully controlled animal model. These changes may also reveal regulatory roles in retroviral infection and latency.
Lymphoma cell-derived extracellular vesicles inhibit autophagy and apoptosis to promote lymphoma cell growth via the microRNA-106a/Beclin1 axis
Lymphoma is a common malignant tumor globally. Tumor-derived extracellular vesicles (Evs) participate in genetic information exchange between tumor cells. We investigated the role and mechanism of human Burkitt lymphoma cells Raji-derived Evs (Raji-Evs) in lymphoma cells. Effects of Evs on lymphoma cell proliferation, invasion, autophagy, and apoptosis were assessed using Cell Counting Kit-8 method, Transwell assay, laser confocal microscopy, Western blotting, and flow cytometry. microRNA (miR)-106a expression in lymphoma cells was determined using reverse transcription-quantitative polymerase chain reaction and then downregulated in Raji cells and then Evs were isolated (Evs-in-miR-106a) to evaluate its role in lymphoma cell growth. The binding relationship between miR-106a and Beclin1 was verified using RNA pull-down and dual-luciferase assays. Beclin1 was overexpressed in SU-DHL-4 and Farage cells and SU-DHL-4 cell autophagy and apoptosis were detected. The levels of miR-106a and Beclin1 in SU-DHL-4 cells were detected after adding autophagy inhibitors. The tumorigenicity assay in nude mice was performed to validate the effects of Raji-Evs in vivo. Raji-Evs promoted lymphoma cell proliferation and invasion and increased miR-106a. miR-106a knockdown reversed Evs-promoted lymphoma cell proliferation and invasion. miR-106a carried by Raji-Evs targeted Beclin1 expression. Beclin1 overexpression or miR-106a inhibitor reversed the effects of Evs on lymphoma cell autophagy and apoptosis. Autophagy inhibitors elevated miR-106a expression and lowered Beclin1 expression. Raji-Evs-carried miR-106a inhibited Beclin1-dependent autophagy and apoptosis in lymphoma cells, which were further verified in vivo, together with promoted tumor growth. We proved that Raji-Evs inhibited lymphoma cell autophagy and apoptosis and promoted cell growth via the miR-106a/Beclin1 axis.
LncRNA SNHG12 in extracellular vesicles derived from carcinoma-associated fibroblasts promotes cisplatin resistance in non-small cell lung cancer cells
Non-small-cell lung cancer (NSCLC) is defined as the most universally diagnosed class of lung cancer. Cisplatin (DDP) is an effective drug for NSCLC, but tumors are prone to drug resistance. The current study set out to evaluate the regulatory effect of long non-coding RNA (lncRNA) small nucleolar RNA host gene 12 (SNHG12) in extracellular vesicles (EVs) derived from carcinoma-associated fibroblasts (CAFs) on DDP resistance in NSCLC cells. Firstly, NSCLC cells were treated with EVs, followed by detection of cell activity, IC50 values, cell proliferation and apoptosis, and Cy3-SNHG12. We observed that CAFs-EVs promoted IC50 values and cell proliferation and inhibited apoptosis. In addition, we learned that lncRNA SNHG12 carried by CAFs-EVs into NSCLC facilitated DDP resistance of NSCLC cells. Furthermore, ELAV like RNA binding protein 1 (HuR/ELAVL1) binding to lncRNA SNHG12 and X-linked inhibitor of apoptosis (XIAP) was verified and RNA stability of XIAP was also verified CAFs-EVs promoted RNA stability and transcription of XIAP, while silencing HuR could partially-reverse this promoting effect. Further joint experimentation showed that silencing XIAP partially inhibited DDP resistance in NSCLC cells. Additionally, the tumor growth and the positive rate of Ki67 and HuR were detected, which showed that CAFs-oe-EVs promoted the tumor and the positive rate of Ki67, as well as the levels of lncRNA SNHG12, HuR, and XIAP in vivo. Collectively, our findings indicated that lncRNA SNHG12 carried by CAFs-EVs into NSCLC cells promoted RNA stability and XIAP transcription by binding to HuR, thus augmenting DDP resistance in NSCLC cells.
Liver‐originated small extracellular vesicles with TM4SF5 target brown adipose tissue for homeostatic glucose clearance
Transmembrane 4 L six family member 5 (TM4SF5) is involved in chronic liver disease, although its role in glucose homeostasis remains unknown. TM4SF5 deficiency caused age-dependent glucose (in)tolerance with no link to insulin sensitivity. Further, hepatic TM4SF5 binding to GLUT1 promoted glucose uptake and glycolysis. Excessive glucose repletion caused hepatocytes to secrete small extracellular vesicles (sEVs) loaded with TM4SF5 (hep-sEVTm4sf5 ), suggesting a role for sEVTm4sf5 in glucose metabolism and homeostasis. Hep-sEVTm4sf5 were smaller than sEVControl and recruit proteins for efficient organ tropism. Liver-derived sEVs, via a liver-closed vein circuit (LCVC) using hepatic TM4SF5-overexpressing (Alb-Tm4sf5 TG) mice (liv-sEVTm4sf5 ), improved glucose tolerance in Tm4sf5-/- KO mice and targeted brown adipose tissues (BATs), possibly allowing the clearance of blood glucose as heat independent of UCP1. Taken together, hep-sEVTm4sf5 might clear high extracellular glucose levels more efficiently by targeting BAT compared with hep-sEVControl , suggesting an insulin-like role for sEV™4SF5 in affecting age-related metabolic status and thus body weight (BW).
Lipid Droplets Fuel Small Extracellular Vesicle Biogenesis
Abstract Despite an increasing gain of knowledge regarding small extracellular vesicle (sEV) composition and functions in cell-cell communication, the mechanism behind their biogenesis remains unclear. Here, we revealed for the first time that the sEV biogenesis and release into the microenvironment are tightly connected with another important organelle: Lipid Droplets (LD). We have observed this correlation using different human cancer cell lines as well as patient-derived colorectal cancer stem cells (CR-CSCs). Our results showed that the use of external stimuli such as radiation, pH, hypoxia, or lipid interfering drugs, known to affect the LD content, had a similar effect in terms of sEV secretion. Additional validations were brought using multiple omics data, at the mRNA and protein levels. Altogether, the possibility to fine-tune sEV biogenesis by targeting LDs, could have a massive impact on the amount, the cargos and the properties of those sEVs, paving the way for new clinical perspectives. Significance Statement
Lim Domain Binding 3 (Ldb3) Identified as a Potential Marker of Cardiac Extracellular Vesicles
Extracellular vesicles (EVs) are considered as transporters of biomarkers for the diagnosis of cardiac diseases, playing an important role in cell-to-cell communication during physiological and pathological processes. However, specific markers for the isolation and analysis of cardiac EVs are missing, imposing limitation on understanding their function in heart tissue. For this, we performed multiple proteomic approaches to compare EVs isolated from neonate rat cardiomyocytes and cardiac fibroblasts by ultracentrifugation, as well as EVs isolated from minced cardiac tissue and plasma by EVtrap. We identified Ldb3, a cytoskeletal protein which is essential in maintaining Z-disc structural integrity, as enriched in cardiac EVs. This result was validated using different EV isolation techniques showing Ldb3 in both large and small EVs. In parallel, we showed that Ldb3 is almost exclusively detected in the neonate rat heart when compared to other tissues, and specifically in cardiomyocytes compared to cardiac fibroblasts. Furthermore, Ldb3 levels, specifically higher molecular weight isoforms, were decreased in the left ventricle of ischemic heart failure patients compared to control groups, but not in the corresponding EVs. Our results suggest that Ldb3 could be a potential cardiomyocytes derived-EV marker and could be useful to identify cardiac EVs in physiological and pathological conditions.
Lateral Flow Test (LFT) Detects Cell‐Free MicroRNAs Predictive of Preterm Birth Directly from Human Plasma
Despite extensive research toward the development of point‐of‐care nucleic acid tests (POC NATs) for the detection of microRNAs (miRs) from liquid biopsies, major hurdles remain including the strict requirement for extensive off‐chip sample preprocessing. Herein, a nucleic acid lateral flow test (NALFT) is reported on that enables the direct detection of endogenous miRs from as little as 3 μL of plasma without the requirement for any enzyme‐catalyzed target amplification or complex miR extraction steps. This is achieved through integration of a denaturing hydrogel composite material onto the LFT, allowing for near‐instantaneous on‐chip release of miRs from their carriers (extracellular vesicles or transport proteins) prior to detection. This next‐generation LFT is sensitive enough to detect endogenous concentrations of miR‐150‐5p, a predictive biomarker for preterm birth (PTB) found deregulated in maternal blood from as early as 12th week of pregnancy. Herein, a key step is represented toward a first bedside test for risk‐stratification during pregnancy by predicting true outcome at a very early stage. More generally, the universal and versatile nature of this novel sample preprocessing platform can further improve the robustness of existing NALFTs and facilitate their application at the POC. On‐chip microRNA release from carrier protein and extracellular vesicles using a denaturing hydrogel–cellulose pad enables direct detection of predictive circulating microRNA biomarkers for preterm birth directly from human plasma. This next‐generation bedside lateral flow test provides a unique tool for risk‐stratification during pregnancy by predicting true outcome at a very early stage.
Large extracellular vesicles do not mitigate the harmful effect of hyperglycemia on endothelial cell mobility
Extracellular vesicles, especially the larger fraction (LEVs - large extracellular vesicles), are believed to be an important means of intercellular communication. Earlier studies on LEVs have shown their healing properties, especially in the vascular cells of diabetic patients. Uptake of LEVs by endothelial cells and internalization of their cargo have also been demonstrated. Endothelial cells change their properties under hyperglycemic conditions (HGC), which reduces their activity and is the cause of endothelial dysfunction. The aim of our study was to investigate how human umbilical vein endothelial cells (HUVECs) change their biological properties: shape, mobility, cell surface stiffness, as well as describe the activation of metabolic pathways after exposure to the harmful effects of HGC and the administration of LEVs released by endothelial cells. We obtained LEVs from HUVEC cultures in HGC and normoglycemia (NGC) using the filtration and ultracentrifugation methods. We assessed the size of LEVs and the presence of biomarkers such as phosphatidylserine, CD63, beta-actin and HSP70. We analyzed the LEVs uptake efficiency by HUVECs, HUVEC shape, actin cytoskeleton remodeling, surface stiffness and finally gene expression by mRNA analysis. Under HGC conditions, HUVECs were larger and had a stiffened surface and a strengthened actin cortex compared to cells under NGC condition. HGC also altered the activation of metabolic pathways, especially those related to intracellular transport, metabolism, and organization of cellular components. The most interesting observation in our study is that LEVs did not restore cell motility disturbed by HGC. Although, LEVs were not able to reverse this deleterious effect of HGC, they activated transcription of genes involved in protein synthesis and vesicle trafficking in HUVECs.
Label-Free Classification of Bacterial Extracellular Vesicles by Combining Nanoplasmonic Sensors With Machine Learning
Bacterial extracellular vesicles (EVs) are nano- scale lipid-enclosed packages that are released by bacteria cells and shuttle various biomolecules between bacteria or host cells. They are implicated in playing several important roles, from infectious disease progression to maintaining proper gut health, however the tools available to characterise and classify them are limited and impractical for many applications. Surface-enhanced Raman Spectroscopy (SERS) provides a promising means of rapidly fingerprinting bacterial EVs in a label-free manner by taking advantage of plasmonic resonances that occur on nanopatterned surfaces, effectively amplifying the inelastic scattering of incident light. In this study, we demonstrate that by applying machine learning algorithms to bacterial EV SERS spectra, EVs from cultures of the same bacterial species (Escherichia coli) can be classified by strain, culture conditions, and purification method. While these EVs are highly purified and homogeneous compared to complex samples, the ability to classify them from a single species demonstrates the incredible power of SERS when combined with machine learning, and the importance of considering these parameters in future applications. We anticipate that these findings will play a crucial role in developing the laboratory and clinical utility of bacterial EVs, such as the label-free, noninvasive, and rapid diagnosis of infections without the need to culture samples from blood, urine, or other fluids.
L1CAM is not associated with extracellular vesicles in human cerebrospinal fluid or plasma
L1CAM is a transmembrane protein expressed on neurons that was presumed to be found on neuron-derived extracellular vesicles (NDEVs) in human biofluids. We developed a panel of single-molecule array assays to evaluate the use of L1CAM for NDEV isolation. We demonstrate that L1CAM is not associated with extracellular vesicles in human plasma or cerebrospinal fluid and therefore recommend against its use as a marker in NDEV isolation protocols.
Isolation of intact extracellular vesicles from cryopreserved samples
Extracellular vesicles (EVs) have emerged as promising candidates in biomarker discovery and diagnostics. Protected by the lipid bilayer, the molecular content of EVs in diverse biofluids are protected from RNases and proteases in the surrounding environment that may rapidly degrade targets of interests. Nonetheless, cryopreservation of EV-containing samples to -80°C may expose the lipid bilayer to physical and biological stressors which may result in cryoinjury and contribute to changes in EV yield, function, or molecular cargo. In the present work, we systematically evaluate the effect of cryopreservation at -80°C for a relatively short duration of storage (up to 12 days) on plasma- and media-derived EV particle count and/or RNA yield/quality, as compared to paired fresh controls. On average, we found that the plasma-derived EV concentration of stored samples decreased to 23% of fresh samples. Further, this significant decrease in EV particle count was matched with a corresponding significant decrease in RNA yield whereby plasma-derived stored samples contained only 47-52% of the total RNA from fresh samples, depending on the extraction method used. Similarly, media-derived EVs showed a statistically significant decrease in RNA yield whereby stored samples were 58% of the total RNA from fresh samples. In contrast, we did not obtain clear evidence of decreased RNA quality through analysis of RNA traces. These results suggest that samples stored for up to 12 days can indeed produce high-quality RNA; however, we note that when directly comparing fresh versus cryopreserved samples without cryoprotective agents there are significant losses in total RNA. Finally, we demonstrate that the addition of the commonly used cryoprotectant agent, DMSO, alongside greater control of the rate of cooling/warming, can rescue EVs from damaging ice formation and improve RNA yield.
Isolation of Extracellular Vesicles From the Bronchoalveolar Lavage Fluid of Healthy and Asthmatic Horses
Extracellular vesicles (EVs) are membrane-bound particles that engage in inflammatory reactions by mediating cell-cell interactions. Previously, EVs have been isolated from the bronchoalveolar lavage fluid (BALF) of humans and rodents. The aim of this study was to investigate the number and size distribution of EVs in the BALF of asthmatic horses (EA, n = 35) and healthy horses (n = 19). Saline was injected during bronchoscopy to the right lung followed by manual aspiration. The retrieved BALF was centrifuged twice to remove cells and biological debris. The supernatant was concentrated and EVs were isolated using size-exclusion chromatography. Sample fractions were measured with nanoparticle tracking analysis (NTA) for particle number and size, and transmission electron microscopy and confocal laser scanning microscopy were used to visualize EVs. The described method was able to isolate and preserve EVs. The mean EV size was 247 ± 35 nm (SD) in the EA horses and 261 ± 47 nm in the controls by NTA. The mean concentration of EVs was 1.38 × 1012 ± 1.42 × 1012 particles/mL in the EA horses and 1.33 × 1012 ± 1.07 × 1012 particles/mL in the controls with no statistically significant differences between the groups. With Western blotting and microscopy, these particles were documented to associate with EV protein markers (CD63, TSG101, HSP70, EMMPRIN, and actin) and hyaluronan. Equine BALF is rich in EVs of various sizes, and the described protocol is usable for isolating EVs. In the future, the role of EVs can be studied in horses with airway inflammation.
ISOLATION METHODS OF LARGE AND SMALL EXTRACELLULAR VESICLES DERIVED FROM CARDIOVASCULAR PROGENITORS: A COMPARATIVE STUDY
Since the discovery of the beneficial therapeutical effects of extracellular vesicles (EVs), these agents have been attracting great interest as next-generation therapies. EVs are nanosized membrane bodies secreted by all types of cells that mediate cell–cell communication. Although the classification of different subpopulations of EVs can be complex, they are broadly divided into microvesicles and exosomes based on their biogenesis and in large and small EVs based on their size. As this is an emerging field, current investigations are focused on basic aspects such as the more convenient method for EV isolation. In the present paper, we used cardiac progenitor cells (CPCs) to study and compare different cell culture conditions for EV isolation as well as two of the most commonly employed purification methods: ultracentrifugation (UC) and size-exclusion chromatography (SEC). Large and small EVs were separately analysed. We found that serum starvation of cells during the EV collecting period led to a dramatic decrease in EV secretion and major cell death. Regarding the isolation method, our findings suggest that UC and SEC gave similar EV recovery rates. Separation of large and small EV-enriched subpopulations was efficiently achieved with both purification protocols although certain difference in sample heterogeneity was observed. Noteworthy, while calnexin was abundant in large EVs, ALIX and CD63 were mainly found in small EVs. Finally, when the functionality of EVs was assessed on primary culture of adult murine cardiac fibroblasts, we found that EVs were taken up by these cells, which resulted in a pronounced reduction in the proliferative and migratory capacity of the cells. Specifically, a tendency towards a larger effect of SEC-related EVs was observed. No differences could be found between large and small EVs. Altogether, these results contribute to establish the basis for the use of EVs as therapeutic platforms, in particular in regenerative fields.
Isolation methodology is essential to the evaluation of the extracellular vesicle component of the senescence‐associated secretory phenotype
A hallmark of senescence is the acquisition of an enhanced secretome comprising inflammatory mediators and tissue remodelling agents - the senescence-associated secretory phenotype (SASP). Through the SASP, senescent cells are hypothesised to contribute to both ageing and pathologies associated with age. Whilst soluble factors have been the most widely investigated components of the SASP, there is growing evidence that small extracellular vesicles (EVs) comprise functionally important constituents. Thus, dissecting the contribution of the soluble SASP from the vesicular component is crucial to elucidating the functional significance of senescent cell derived EVs. Here, we take advantage of a systematic proteomics based approach to determine that soluble SASP factors co-isolate with EVs following differential ultracentrifugation (dUC). We present size-exclusion chromatography (SEC) as a method for separation of the soluble and vesicular components of the senescent secretome and thus EV purification. Furthermore, we demonstrate that SEC EVs isolated from senescent cells contribute to non-cell autonomous paracrine senescence. Therefore, this work emphasises the requirement for methodological rigor due to the propensity of SASP components to co-isolate during dUC and provides a framework for future investigations of the vesicular component of the SASP.
Isolation, characterization, and functional study of extracellular vesicles derived from Leishmania tarentolae
Leishmania (L.) species are protozoan parasites with a complex life cycle consisting of a number of developmental forms that alternate between the sand fly vector and their host. The non-pathogenic species L. tarentolae is not able to induce an active infection in a human host. It has been observed that, in pathogenic species, extracellular vesicles (EVs) could exacerbate the infection. However, so far, there is no report on the identification, isolation, and characterization of L. tarentolae EVs. In this study, we have isolated and characterized EVs from L. tarentolae GFP+ (tEVs) along with L. major GFP+ as a reference and positive control. The EVs secreted by these two species demonstrated similar particle size distribution (approximately 200 nm) in scanning electron microscopy and nanoparticle tracking analysis. Moreover, the said EVs showed similar protein content, and GFP and GP63 proteins were detected in both using dot blot analysis. Furthermore, we could detect Leishmania-derived GP63 protein in THP-1 cells treated with tEVs. Interestingly, we observed a significant increase in the production of IFN-γ, TNF-α, and IL-1β, while there were no significant differences in IL-6 levels in THP-1 cells treated with tEVs following an infection with L. major compared with another group of macrophages that were treated with L. major EVs prior to the infection. Another exciting observation of this study was a significant decrease in parasite load in tEV-treated Leishmania-infected macrophages. In addition, in comparison with another group of Leishmania-infected macrophages which was not exposed to any EVs, tEV managed to increase IFN-γ and decrease IL-6 and the parasite burden. In conclusion, we report for the first time that L. tarentolae can release EVs and provide evidence that tEVs are able to control the infection in human macrophages, making them a great potential platform for drug delivery, at least for parasitic infections.