Publications
The latest Tunable Resistive Pulse Sensing (TRPS) and qEV Isolation publications.
Recent Publications
A high-throughput methodology for the efficient isolation of highly pure extracellular vesicles from skeletal muscle myoblasts
Background: Skeletal muscle extracellular vesicles (SM-EVs) regulate gene expression events in myogenic differentiation. Optimising effective SM-EV isolation methods offering high levels of purity will be important to accurately define their composition and functionality. Size-exclusion chromatography (SEC) applied in combination with ultrafiltration (UF) has the potential to increase sample throughput, scalability and selectivity. However, an optimal UF+SEC methodology has not been tested for the isolation of myotube derived EVs. Our aim was to compare two different UF protocols and define an optimal window of SEC fractions to maximise SM-EVs recovery and sample purity. Methods: C2C12 myotube conditioned medium was pre-concentrated using Amicon® Ultra 15 or Vivaspin®20, 100KDa UF columns and processed by SEC (IZON, qEV 70nm). The resulting thirty fractions obtained were individually analysed to identify an optimal fraction window for EV recovery. Results: EV markers Alix and TSG101 could be detected up to fraction 13, while CD9 and Annexin A2 only up to fraction 6. ApoA1+ lipoprotein contaminants were detected from fraction 6 onwards for both protocols. Amicon and Vivaspin UF preconcentration protocols led to qualitative and quantitative variations in EV marker profiles and purity. Eliminating lipoprotein co-isolation by reducing the SEC fraction window resulted in a net loss of particles, but increased measures of sample purity and had only a negligible impact on the presence of EV marker proteins. Conclusion: In conclusion, this study developed optimal UF+SEC protocols for the isolation of SM-EVs based on sample purity (fractions 1-5) and total abundance (fractions 2-10). The resulting protocols will be valuable in isolating highly pure SM-EV preparations for biomarker studies.
A Comparison of Blood Plasma Small Extracellular Vesicle Enrichment Strategies for Proteomic Analysis
Proteomic analysis of small extracellular vesicles (sEVs) poses a significant challenge. A ‘gold-standard’ method for plasma sEV enrichment for downstream proteomic analysis is yet to be established. Methods were evaluated for their capacity to successfully isolate and enrich sEVs from plasma, minimise the presence of highly abundant plasma proteins, and result in the optimum representation of sEV proteins by liquid chromatography tandem mass spectrometry. Plasma from four cattle (Bos taurus) of similar physical attributes and genetics were used. Three methods of sEV enrichment were utilised: ultracentrifugation (UC), size-exclusion chromatography (SEC), and ultrafiltration (UF). These methods were combined to create four groups for methodological evaluation: UC + SEC, UC + SEC + UF, SEC + UC and SEC + UF. The UC + SEC method yielded the highest number of protein identifications (IDs). The SEC + UC method reduced plasma protein IDs compared to the other methods, but also resulted in the lowest number of protein IDs overall. The UC + SEC + UF method decreased sEV protein ID, particle number, mean and mode particle size, particle yield, and did not improve purity compared to the UC + SEC method. In this study, the UC + SEC method was the best method for sEV protein ID, purity, and overall particle yield. Our data suggest that the method and sequence of sEV enrichment strategy impacts protein ID, which may influence the outcome of biomarker discovery studies.
A functional corona around extracellular vesicles enhances angiogenesis, skin regeneration and immunomodulation
Nanoparticles can acquire a plasma protein corona defining their biological identity. Corona functions were previously considered for cell-derived extracellular vesicles (EVs). Here we demonstrate that nano-sized EVs from therapy-grade human placental-expanded (PLX) stromal cells are surrounded by an imageable and functional protein corona when enriched with permissive technology. Scalable EV separation from cell-secreted soluble factors via tangential flow-filtration (TFF) and subtractive tandem mass-tag (TMT) proteomics revealed significant enrichment of predominantly immunomodulatory and proangiogenic proteins. Western blot, calceinbased flow cytometry, super-resolution and electron microscopy verified EV identity. PLX-EVs partly protected corona proteins from protease digestion. EVs significantly ameliorated human skin regeneration and angiogenesis in vivo, induced differential signalling in immune cells, and dose-dependently inhibited T cell proliferation in vitro. Corona removal by size-exclusion or ultracentrifugation abrogated angiogenesis. Re-establishing an artificial corona by cloaking EVs with fluorescent albumin as a model protein or defined proangiogenic factors was depicted by superresolution microscopy, electron microscopy and zeta-potential shift, and served as a proof-of-concept. Understanding EV corona formation will improve rational EVinspired nano-therapy design.
A Comparative Proteomic Analysis of Extracellular Vesicles Associated With Lipotoxicity
Extracellular vesicles (EVs) are emerging mediators of intercellular communication in nonalcoholic steatohepatitis (NASH). Palmitate, a lipotoxic saturated fatty acid, activates hepatocellular endoplasmic reticulum stress, which has been demonstrated to be important in NASH pathogenesis, including in the release of EVs. We have previously demonstrated that the release of palmitate-stimulated EVs is dependent on the de novo synthesis of ceramide, which is trafficked by the ceramide transport protein, STARD11. The trafficking of ceramide is a critical step in the release of lipotoxic EVs, as cells deficient in STARD11 do not release palmitate-stimulated EVs. Here, we examined the hypothesis that protein cargoes are trafficked to lipotoxic EVs in a ceramide-dependent manner. We performed quantitative proteomic analysis of palmitate-stimulated EVs in control and STARD11 knockout hepatocyte cell lines. Proteomics was performed on EVs isolated by size exclusion chromatography, ultracentrifugation, and density gradient separation, and EV proteins were measured by mass spectrometry. We also performed human EV proteomics from a control and a NASH plasma sample, for comparative analyses with hepatocyte-derived lipotoxic EVs. Size exclusion chromatography yielded most unique EV proteins. Ceramide-dependent lipotoxic EVs contain damage-associated molecular patterns and adhesion molecules. Haptoglobin, vascular non-inflammatory molecule-1, and insulin-like growth factor-binding protein complex acid labile subunit were commonly detected in NASH and hepatocyte-derived ceramide-dependent EVs. Lipotoxic EV proteomics provides novel candidate proteins to investigate in NASH pathogenesis and as diagnostic biomarkers for hepatocyte-derived EVs in NASH patients.
A comparative analysis of extracellular vesicles (EVs) from human and feline plasma
Extracellular vesicles (EVs) are nanoparticles found in all biological fluids, capable of transporting biological material around the body. Extensive research into the physiological role of EVs has led to the development of the Minimal Information for Studies of Extracellular Vesicles (MISEV) framework in 2018. This framework guides the standardisation of protocols in the EV field. To date, the focus has been on EVs of human origin. As comparative medicine progresses, there has been a drive to study similarities between diseases in humans and animals. To successfully research EVs in felines, we must validate the application of the MISEV guidelines in this group. EVs were isolated from the plasma of healthy humans and felines. EV characterisation was carried out according to the MISEV guidelines. Human and feline plasma showed a similar concentration of EVs, comparable expression of known EV markers and analogous particle to protein ratios. Mass spectrometry analyses showed that the proteomic signature of EVs from humans and felines were similar. Asymmetrical flow field flow fractionation, showed two distinct subpopulations of EVs isolated from human plasma, whereas only one subpopulation was isolated from feline plasma. Metabolomic profiling showed similar profiles for humans and felines. In conclusion, isolation, and characterisation of EVs from humans and felines show that MISEV2018 guidelines may also be applied to felines. Potential comparative medicine studies of EVs may provide a model for studying naturally occurring diseases in both humans and felines.
A common vesicle proteome drives fungal biofilm development
Extracellular vesicles mediate community interactions among cells ranging from unicellular microbes to complex vertebrates. Extracellular vesicles of the fungal pathogen Candida albicans are vital for biofilm communities to produce matrix, which confers environmental protection and modulates community dispersion. Infections are increasingly due to diverse Candida species, such as the emerging pathogen Candida auris, as well as mixed Candida communities. Here, we define the composition and function of biofilm-associated vesicles among five species across the Candida genus. We find similarities in vesicle size and release over the biofilm lifespan. Whereas overall cargo proteomes differ dramatically among species, a group of 36 common proteins is enriched for orthologs of C. albicans biofilm mediators. To understand the function of this set of proteins, we asked whether mutants in select components were important for key biofilm processes, including drug tolerance and dispersion. We found that the majority of these cargo components impact one or both biofilm processes across all five species. Exogenous delivery of wild-type vesicle cargo returned mutant phenotypes toward wild type. To assess the impact of vesicle cargo on interspecies interactions, we performed cross-species vesicle addition and observed functional complementation for both biofilm phenotypes. We explored the biologic relevance of this cross-species biofilm interaction in mixed species and mutant studies examining the drug-resistance phenotype. We found a majority of biofilm interactions among species restored the community's wild-type behavior. Our studies indicate that vesicles influence the development of protective monomicrobial and mixed microbial biofilm communities.
Exosomics—A review of biophysics, biology and biochemistry of exosomes with a focus on human breast milk
Exosomes are biomolecular nanostructures released from cells. They carry specific biomolecular information and are mainly researched for their exquisite properties as a biomarker source and delivery system. We introduce exosomes in the context of other extracellular vesicles, describe their biophysical isolation and characterisation and discuss their biochemical profiling. Motivated by our interest in early-life nutrition and health, and corresponding studies enrolling lactating mothers and their infants, we zoom into exosomes derived from human breast milk. We argue that these should be more extensively studied at proteomic and micronutrient profiling level, because breast milk exosomes provide a more specific window into breast milk quality from an immunological (proteomics) and nutritional (micronutrient) perspective. Such enhanced breast milk exosome profiling would thereby complement and enrich the more classical whole breast milk analysis and is expected to deliver more functional insights than the rather descriptive analysis of human milk, or larger fractions thereof, such as milk fat globule membrane. We substantiate our arguments by a bioinformatic analysis of two published proteomic data sets of human breast milk exosomes.
Radio-detoxified LPS alters bone marrow-derived extracellular vesicles and endothelial progenitor cells
Stem cell-based therapies raise hope for cell replacement and provide opportunity for cardiac regenerative medicine and tumor therapy. Extracellular vesicles are a membrane-enclosed intercellular delivery system with the potential to improve the therapeutic efficacy of the treatment of a variety of disorders. As the incidence of breast cancer continues to rise, radiotherapy has emerged as a leading treatment modality. Radiotherapy also increases the risk of coronary heart disease and cardiac mortality. In a chest-irradiated mouse model of cardiac injury, we investigated the effects of local irradiation. We found an increased lethality after 16 Gy irradiation. Importantly, radio-detoxified LPS (RD-LPS) treatment prolonged the survival significantly. By flow cytometry, we demonstrated that upon administration of RD-LPS, the number of bone marrow-derived endothelial progenitor cells increased in the bone marrow and, in particular, in the circulation. Furthermore, mass spectrometry analysis showed that RD-LPS altered the proteomic composition of bone marrow cell-derived small extracellular vesicles (sEVs). RD-LPS treatment increased interferon-induced transmembrane protein-3 (IFITM3) expression markedly both in bone marrow cells and in bone marrow cell-derived small extracellular vesicles. This is the first study to demonstrate that radio-detoxified LPS treatment induces an increase of circulating endothelial progenitor cells (EPCs) in parallel with a reduced radiotherapy-related mortality. While the total number of bone marrow-derived extracellular vesicles was significantly increased 24 h after treatment in the RD-LPS groups, the number of endothelial progenitor cells was reduced in animals injected with GW4896 (a chemical inhibitor of exosome biogenesis) as compared with controls. In contrast to these in vivo results, in vitro experiments did not support the effect of sEVs on EPCs. Our data raise the intriguing possibility that IFITM3 may serve as a marker of the radio-detoxified LPS treatment.
Effect of pH, ionic strength, and freezing treatment on a colloidal suspension of egg white aggregates
Characteristics of protein colloidal suspensions can be modified by freezing treatment. In this study, different colloidal suspensions of egg white aggregates (with different pH levels and ionic strengths) were frozen for several days, after which the colloidal suspensions were analyzed by a tunable resistive pulse sensing device to detect changes in particle characteristics. The average particle diameter in suspension increased with an enhancement in ionic strength. Particle number concentration decreased during five days of freezing treatment. The same colloidal suspensions were also analyzed using a small-angle X-ray scattering device. The results indicate that the inner structure was influenced by pH but did not change during the freezing process. The stability of foam made from frozen-thawed suspensions also increased with the enhancement of ionic strength. Based on these results, it appears that by controlling pH levels, ionic strength, and freezing time, the characteristics of egg white aggregates can be modified by freezing.
A size-exclusion-based approach for purifying extracellular vesicles from human plasma.
Extracellular vesicles (EVs) are released into blood from multiple organs and carry molecular cargo that facilitates inter-organ communication and an integrated response to physiological and pathological stimuli. Interrogation of the protein cargo of EVs is currently limited by the absence of optimal and reproducible approaches for purifying plasma EVs that are suitable for downstream proteomic analyses. We describe a size-exclusion chromatography (SEC)-based method to purify EVs from platelet-poor plasma (PPP) for proteomics profiling via high-resolution mass spectrometry (SEC-MS). The SEC-MS method identifies more proteins with higher precision than several conventional EV isolation approaches. We apply the SEC-MS method to identify the unique proteomic signatures of EVs released from platelets, adipocytes, muscle cells, and hepatocytes, with the goal of identifying tissue-specific EV markers. Furthermore, we apply the SEC-MS approach to evaluate the effects of a single bout of exercise on EV proteomic cargo in human plasma.
The secretome derived from mesenchymal stromal cells cultured in a xeno-free medium promotes human cartilage recovery in vitro
Osteoarthritis (OA) is a disabling joint disorder causing articular cartilage degeneration. Currently, the treatments are mainly aimed to pain and symptoms relief, rather than disease amelioration. Human bone marrow stromal cells (hBMSCs) have emerged as a promising paracrine mechanism-based tool for OA treatment. Here, we investigate the therapeutic potential of conditioned media (CM) and extracellular vesicles (EVs) isolated from hBMSC and grown in a xeno-free culture system (XFS) compared to the conventional fetal bovine serum-culture system (FBS) in an in vitro model of OA. First, we observed that XFS promoted growth and viability of hBMSCs compared to FBS-containing medium while preserving their typical phenotype. The biological effects of the CM derived from hBMSC cultivated in XFS- and FBS-based medium were tested on IL-1α treated human chondrocytes, to mimic the OA enviroment. Treatment with CM derived from XFS-cultured hBMSC inhibited IL-1α-induced expression of IL-6, IL-8, and COX-2 by hACs compared to FBS-based condition. Furthermore, we observed that hBMSCs grown in XFS produced a higher amount of EVs compared to FBS-culture. The hBMSC-EVs not only inhibit the adverse effects of IL-1α-induced inflammation, but play a significant in vitro chondroprotective effect. In conclusion, the XFS medium was found to be suitable for isolation and expansion of hBMSCs with increased safety profile and intended for ready-to-use clinical therapies.
Phenotype-agnostic molecular subtyping of neurodegenerative disorders: the Cincinnati Cohort Biomarker Program (CCBP)
Ongoing biomarker development programs have been designed to identify serologic or imaging signatures of clinico-pathologic entities, assuming distinct biological boundaries between them. Identified putative biomarkers have exhibited large variability and inconsistency between cohorts, and remain inadequate for selecting suitable recipients for potential disease-modifying interventions. We launched the Cincinnati Cohort Biomarker Program (CCBP) as a population-based, phenotype-agnostic longitudinal study. While patients affected by a wide range of neurodegenerative disorders will be deeply phenotyped using clinical, imaging, and mobile health technologies, analyses will not be anchored on phenotypic clusters but on bioassays of to-be-repurposed medications as well as on genomics, transcriptomics, proteomics, metabolomics, epigenomics, microbiomics, and pharmacogenomics analyses blinded to phenotypic data. Unique features of this cohort study include (1) a reverse biology-to-phenotype direction of biomarker development in which clinical, imaging, and mobile health technologies are subordinate to biological signals of interest; (2) hypothesis free, causally- and data driven-based analyses; (3) inclusive recruitment of patients with neurodegenerative disorders beyond clinical criteria-meeting patients with Parkinson’s and Alzheimer’s diseases, and (4) a large number of longitudinally followed participants. The parallel development of serum bioassays will be aimed at linking biologically suitable subjects to already available drugs with repurposing potential in future proof-of-concept adaptive clinical trials. Although many challenges are anticipated, including the unclear pathogenic relevance of identifiable biological signals and the possibility that some signals of importance may not yet be measurable with current technologies, this cohort study abandons the anchoring role of clinico-pathologic criteria in favor of biomarker-driven disease subtyping to facilitate future biosubtype-specific disease-modifying therapeutic efforts.
Lipoprotein-apheresis reduces circulating microparticles in individuals with familial hypercholesterolemia
Lipoprotein-apheresis (apheresis) removes LDL-cholesterol in patients with severe dyslipidemia. However, reduction is transient, indicating that the long-term cardiovascular benefits of apheresis may not solely be due to LDL removal. Microparticles (MPs) are submicron vesicles released from the plasma membrane of cells. MPs, particularly platelet-derived MPs, are increasingly being linked to the pathogenesis of many diseases. We aimed to characterize the effect of apheresis on MP size, concentration, cellular origin, and fatty acid concentration in individuals with familial hypercholesterolemia (FH). Plasma and MP samples were collected from 12 individuals with FH undergoing routine apheresis. Tunable resistive pulse sensing (np200) and nanoparticle tracking analysis measured a fall in MP concentration (33 and 15%, respectively; P < 0.05) pre- to post-apheresis. Flow cytometry showed MPs were predominantly annexin V positive and of platelet (CD41) origin both pre- (88.9%) and post-apheresis (88.4%). Fatty acid composition of MPs differed from that of plasma, though apheresis affected a similar profile of fatty acids in both compartments, as measured by GC-flame ionization detection. MP concentration was also shown to positively correlate with thrombin generation potential. In conclusion, we show apheresis nonselectively removes annexin V-positive platelet-derived MPs in individuals with FH. These MPs are potent inducers of coagulation and are elevated in CVD; this reduction in pathological MPs could relate to the long-term benefits of apheresis.
Extracellular vesicles as biomarkers in cardiovascular disease; chances and risks
The field of extracellular vesicles (EV) is rapidly expanding, also within cardiovascular diseases. Besides their exciting roles in cell-to-cell communication, EV have the potential to serve as excellent biomarkers, since their counts, content, and origin might provide useful information about the pathophysiology of cardiovascular disorders. Various studies have already indicated associations of EV counts and content with cardiovascular diseases. However, EV research is complicated by several factors, most notably the small size of EV. In this review, the advantages and drawbacks of EV-related methods and applications as biomarkers are highlighted.
Exosomes, their biogenesis and role in inter-cellular communication, tumor microenvironment and cancer immunotherapy
Exosomes are extracellular vesicles ranging from 30 to 150 nm in diameter that contain molecular constituents of their host cells. They are released from different types of cells ranging from immune to tumor cells and play an important role in intercellular communication. Exosomes can be manipulated by altering their host cells and can be loaded with products of interest such as specific drugs, proteins, DNA and RNA species. Due to their small size and the unique composition of their lipid bilayer, exosomes are capable of reaching different cell types where they alter the pathophysiological conditions of the recipient cells. There is growing evidence that exosomes are used as vehicles that can modulate the immune system and play an important role in cancer progression. The cross communication between the tumors and the cells of the immune system has gained attention in various immunotherapeutic approaches for several cancer types. In this review, we discuss the exosome biogenesis, their role in inter-cellular communication, and their capacity to modulate the immune system as a part of future cancer immunotherapeutic approaches and their potential to serve as biomarkers of therapy response.
4-1BBL-containing leukemic extracellular vesicles promote immunosuppressive effector regulatory T cells
Chronic and acute myeloid leukemia (CML, AML) evade immune system surveillance and induce immunosuppression by expanding pro-leukemic Foxp3+ regulatory T cells (Tregs). High levels of immunosuppressive Tregs predict inferior response to chemotherapy, leukemia relapse and shorter survival. However, mechanisms that promote Tregs in myeloid leukemias remain largely unexplored. Here, we identify leukemic extracellular vesicles (EVs) as drivers of effector, pro-leukemic Tregs. Using mouse model of CML-like disease, we found that Rab27a-dependent secretion of leukemic EVs promoted leukemia engraftment, which was associated with higher abundance of activated, immunosuppressive Tregs. Leukemic EVs attenuated mTOR-S6 and activated STAT5 signaling, as well as evoked significant transcriptomic changes in Tregs. We further identified specific effector signature of Tregs promoted by leukemic EVs. Leukemic EVs-driven Tregs were characterized by elevated expression of effector/tumor Treg markers CD39, CCR8, CD30, TNFR2, CCR4, TIGIT, IL21R and included two distinct, effector Treg (eTreg) subsets - CD30+CCR8hiTNFR2hi eTreg1 and CD39+TIGIThi eTreg2. Finally, we showed that costimulatory ligand 4-1BBL/CD137L, shuttled by leukemic EVs, promoted suppressive activity and effector phenotype of Tregs by regulating expression of receptors such as CD30 and TNFR2. Collectively, our work highlights the role of leukemic extracellular vesicles in stimulation of immunosuppressive regulatory T cells and leukemia growth. We postulate that targeting of Rab27a-dependent secretion of leukemic EVs may be a viable therapeutic approach in myeloid neoplasms.