Characterisation of extracellular vesicles in the context of myocardial infarction and glucose intolerance

Extracellular Vesicles
/References

Mazlan, S. M. I., V. Duval, C. Devue, M. Robillard, F. Mezine, P. Coly, S. Chatterjee et al. "Characterisation of extracellular vesicles in the context of myocardial infarction and glucose intolerance." Archives of Cardiovascular Diseases Supplements 13, no. 2 (2021): 197.

Introduction In response to myocardial infarction (MI), extracellular vesicles (EVs), including large (lEVs) and small (sEVs), are released within and from the heart to facilitate intercellular communication and maintain cardiac homeostasis by transporting cargo to recipient cells. Objective We investigated how glucose intolerance influences the intracardiac EV release post-MI and their content. Method B6J mice were fed chow (CD) or high-fat diet (HFD) for 3 months. MI was induced by permanent coronary artery ligation. EVs were isolated from left ventricles and quantified by tunable resistive pulse sensing. EVs were characterised by flow cytometry. EV miRNA content was determined by RNAseq and qPCR. Using cardiomyocyte specific GFP+ mice, plasma lEVs were analysed by flow cytometry to determine if cardiomyocyte EVs (CMEVs) are circulating. Labelled hypoxic cardiomyocyte cell line (HL-1) lEVs were injected in HFD/CD mice post-MI to determine target cells. Results In CD mice, EV release was significantly increased 24 h post-MI compared to sham. HFD lEV levels were significantly higher compared to sham and CD mice post-MI with no difference in sEV release between sham and MI HFD mice. Intracardiac lEVs originate from cardiomyocyte and endothelial cells in response to MI and MI + HFD respectively. qPCR analyses identified miRNA candidates that were modulated by MI and HFD. Intracardiac GFP + lEV levels were lower in HFD than in CD mice whereas levels of circulating GFP + lEVs were higher. In vivo biodistribution studies revealed a preferential uptake of hypoxic HL-1 lEVs by splenic myeloid cells in HFD spleens versus CD post-MI. Conclusion Our results show that glucose intolerance modulates intracardiac EV release post-MI and their miRNA cargo. Circulating CMEV levels as well as their uptake by splenic myeloid cells are increased. Further investigations will aim to decipher the impact of the intracardiac EV miRNA mediated transfer in the diabetic heart post-MI.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023
No items found.
No items found.
No items found.