P. Githure M’Angale, Adrienne Lemieux, Yumeng Liu, Shuhao Wang, Max Zinter, Gimena Alegre, Alfred Simkin, Vivian Budnik, Brian A. Kelch, Travis Thomson

Capsid transfer of the retrotransposon Copia controls structural synaptic plasticity in Drosophila

Viruses
/References

Transposons are parasitic genome elements that can also serve as raw material for the evolution of new cellular functions. However, how retrotransposons are selected and domesticated by host organisms to modulate synaptic plasticity remains largely unknown. Here, we show that the Ty1 retrotransposon Copia forms virus-like capsids in vivo and transfers between cells. Copia is enriched at the Drosophila neuromuscular junction (NMJ) and transported across synapses, and disrupting its expression promotes both synapse development and structural synaptic plasticity. We show that proper synaptic plasticity is maintained in Drosophila by the balance of Copia and the Arc1 (activity-regulated cytoskeleton-associated protein) homolog. High-resolution cryogenic-electron microscopy imaging shows that the structure of the Copia capsid has a large capacity and pores like retroviruses but is distinct from domesticated capsids such as dArc1. Our results suggest a fully functional transposon mediates synaptic plasticity, possibly representing an early stage of domestication of a retrotransposon.

View full article

Recent Publications

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is adapting to continuous presence in humans. Transitions to endemic infection patterns are associated with changes in the spike (S) proteins that direct virus-cell entry. These changes generate antigenic drift and thereby allow virus maintenance in the face of prevalent human antiviral antibodies. These changes also fine tune virus-cell entry dynamics in ways that optimize transmission and infection into human cells. Focusing on the latter aspect, we evaluated the effects of several S protein substitutions on virus-cell membrane fusion, an essential final step in enveloped virus-cell entry. Membrane fusion is executed by integral-membrane “S2” domains, yet we found that substitutions in peripheral “S1” domains altered late-stage fusion dynamics, consistent with S1-S2 heterodimers cooperating throughout cell entry. A specific H655Y change in S1 stabilized a fusion-intermediate S protein conformation and thereby delayed membrane fusion. The H655Y change also sensitized viruses to neutralization by S2-targeting fusion-inhibitory peptides and stem-helix antibodies. The antibodies did not interfere with early fusion-activating steps; rather they targeted the latest stages of S2-directed membrane fusion in a novel neutralization mechanism. These findings demonstrate that single amino acid substitutions in the S proteins both reset viral entry—fusion kinetics and increase sensitivity to antibody neutralization. The results exemplify how selective forces driving SARS-CoV-2 fitness and antibody evasion operate together to shape SARS-CoV-2 evolution.

2024

The current study analyzed the intersecting biophysical, biochemical, and functional properties of extracellular particles (EPs) with the human immunodeficiency virus type-1 (HIV-1) beyond the currently accepted size range for HIV-1. We isolated five fractions (Frac-A through Frac-E) from HIV-infected cells by sequential differential ultracentrifugation (DUC). All fractions showed a heterogeneous size distribution with median particle sizes greater than 100 nm for Frac-A through Frac-D but not for Frac-E, which contained small EPs with an average size well below 50 nm. Synchronized and released cultures contained large infectious EPs in Frac-A, with markers of amphisomes and viral components. Additionally, Frac-E uniquely contained EPs positive for CD63, HSP70, and HIV-1 proteins. Despite its small average size, Frac-E contained membrane-protected viral integrase, detectable only after SDS treatment, indicating that it is enclosed in vesicles. Single particle analysis with dSTORM further supported these findings as CD63, HIV-1 integrase, and the viral surface envelope (Env) glycoprotein (gp) colocalized on the same Frac-E particles. Surprisingly, Frac-E EPs were infectious, and infectivity was significantly reduced by immunodepleting Frac-E with anti-CD63, indicating the presence of this protein on the surface of infectious small EPs in Frac-E. To our knowledge, this is the first time that extracellular vesicle (EV) isolation methods have identified infectious small HIV-1 particles (smHIV-1) that are under 50 nm. Collectively, our data indicate that the crossroads between EPs and HIV-1 potentially extend beyond the currently accepted biophysical properties of HIV-1, which may have further implications for viral pathogenesis.

2024
No items found.