Bone marrow mesenchymal stem cell derived exosomes delay the occurrence and development of osteoarthritis through cartilage protection.

Extracellular Vesicles
/References

Huajun, Ling, Wang Qiyou, Lin Weiwen, and Luo Penggang. "Bone marrow mesenchymal stem cell derived exosomes delay the occurrence and development of osteoarthritis through cartilage protection." Chinese Journal of Tissue Engineering Research 25, no. 31 (2021): 4964.

Osteoarthritis is the most common joint degenerative disease. At present, bone marrow mesenchymal stem cells have been used in the treatment of osteoarthritis. However, compared with bone marrow mesenchymal stem cells, bone marrow mesenchymal stem cell derived exosome transplantation has more advantages, such as non-immunogenicity, non-tumorigenicity, convenient storage and transportation. OBJECTIVE: To explore the protective effect of bone marrow mesenchymal stem cell exosomes on osteoarthritis.  METHODS: (1) SD rat bone marrow mesenchymal stem cells were extracted and identified by cell morphology and flow cytometry. Exosomes in the cell supernatant were extracted by ultracentrifugation and identified by transmission electron microscopy, particle size and western blot assay. (2) Primary costal chondrocytes were extracted from suckling rats and cocultured with fluorescently labeled exosomes for 12 hours. The phagocytosis of chondrocytes was observed. In vitro chondrocyte damage was induced by interleukin-1β. PBS (100 μL) containing 50 μg exosomes was added for 24 hours. The expression of matrix metalloproteinase-13 and type II collagen fiber α1 protein was detected by immunofluorescence to evaluate the protective effect of exosomes on injured chondrocytes. (3) The rat model of osteoarthritis was induced by iodoacetic acid in vivo. Exosomes were injected into the joint cavity, and the changes of joint structure of osteoarthritis were observed by hematoxylin-eosin staining and safrane-fast green staining. The expression of matrix metalloproteinase-13 and type II collagen fiber α1 protein was measured by immunohistochemical staining to evaluate the protective effect of exosomes on cartilage in vivo.  RESULTS AND CONCLUSION: (1) The extracted primary cells showed a typical fusiform shape and arranged radially. The extracted cells highly expressed CD73 and CD105, but slightly expressed CD45, CD34 and CD3. Transmission electron microscopy showed that the obtained particles showed a typical saucer-like morphology. The particle size was less than 100 nm. Meanwhile, nanoparticles showed positive expression of ALIX and HRS protein. (2) Typical red-stained particles could be observed in chondrocytes, which confirms that exosomes could be taken up by chondrocytes, and exosomes could promote chondrocyte type II collagen fiber α1 protein expression, but inhibit the expression of matrix metalloproteinase-13, which confirmed that exosomes could attenuate the damage effect of interleukin-1β on chondrocytes. (3) Exosomes could promote the morphological recovery of damaged articular cartilage and the up-regulate type II collagen fiber α1 expression, while inhibited the expression of matrix metalloproteinase-13, which also confirmed that exosomes can alleviate the effects of iodoacetic acid on articular cartilage damage. (4) Above findings results indicate that bone marrow mesenchymal stem cell exosomes delay the occurrence and development of osteoarthritis through a chondroprotective mechanism.

View full article

Recent Publications

Background Previous studies found that cigarette smoke (CS) exposure could induce NSCLC malignancy and miRNA dysregulation. Yet, the association of CS-induced miRNA dysregulation and NSCLC malignancy has not been clearly understood. This study aimed to evaluate the effect of CS exposure in smokers on the expression of miR-10b-5p and miR-320b in extracellular vesicles (EVs) from NSCLC patients. Material and methods Bioinformatic analysis was conducted to validate miRNA candidates. Blood and tissue samples were collected from NSCLC patients (n = 21) with smoking and non-smoking history. EVs were isolated from plasma and miRNAs were extracted from the isolated EVs. The miRNAs relative expression was analyzed and compared. Results In silico analysis identified miR-320b and miR-10b-5p as potential biomarkers for diagnosing NSCLC in smokers. Experimental analysis revealed differential expression of EVs-associated miRNAs in NSCLC patients with smoking and non-smoking histories. EVs-associated miR-10b-5p was significantly overexpressed in smoker NSCLC patients (p = 0.000), while miR-320b expression was significantly lower in this group (p = 0.018). Additionally, smoking intensity influenced miRNA expression, with higher smoking intensity correlating with increased miR-10b-5p expression and decreased miR-320b expression. ROC analysis demonstrated that EVs were a superior source of miRNAs compared to plasma for NSCLC diagnostics. miR-10b-5p and miR-320b in EVs showed higher diagnostic performance (AUC 0.878; 0.739) compared to plasma (AUC 0.628; 0.559). Conclusion CS exposure induces different expression of miR-10b-5p and miR-320b in EVs of NSCLC patients with smoking history. EV-related miR-10b-5p and miR-320b showed potential to be utilized as prognostic biomarker for smokers NSCLC patients.

2025

Extracellular vesicles (EVs) have emerged as promising therapeutics with broad clinical applications as diagnostic biomarkers and therapeutic drug delivery systems. Yet, these biopharmaceuticals pose a challenge in terms of manufacturing due to their complexity and heterogeneity. Despite advancements in the field, current purification technologies lack scalability and/or selectivity. Affinity chromatography (AC) − coupling unmatched specificity and scalability − could be used to simplify purification processing and generate clinical-grade EVs with higher titers and purity. In the present work, we report the implementation of an immuno-AC resin to capture and purify EVs directly from clarified cellular feedstocks. Firstly, to guide and support marker selection, vesicle phenotype characterization was conducted using single particle interferometric reflectance image sensing (SP-IRIS) coupled with immunofluorescence. CD81 was the marker which shown to be more present and more likely to have the other markers (CD63 and CD9). Thus, anti-CD81 VHH ligand was generated and evaluated towards recombinant CD81 protein and CD81 bearing EV particles using surface plasmon resonance (SPR). Different chromatographic studies with Anti-CD81 ligand immobilized onto agarose beads resin were conducted to optimize the process parameters (residence time, dynamic binding capacity and impurity clearance). At residence time of 2 min, on average 40 % of pure triple tetraspanin-positive EV fraction was recovered. The enrichment in EV particles herein obtained, based on scale-up calculations, it would be possible to produce 1 × 1013 EVs from a 1L cell culture, while meeting impurity requirements in a single-step purification process (impurity removal over 2 log reduction value). A single-step purification process is possible, enabling the successful isolation of homogeneous EVs population, counting with a final HCP titer of 60 ng/mL and 9 ng/mL of dsDNA impurities. EV’s morphological integrity and internalization ability were also demonstrated, showcasing elution’s efficiency under mild conditions. Overall, this work contributes to the development of a novel, highly specific, AC technology using a camelid-derived affinity ligand which, bridging the scalability requirements demanded of large-scale production, could potentiate the advent of EV-based therapies.

2025

Extracellular vesicles (EVs) have emerged as promising therapeutics with broad clinical applications as diagnostic biomarkers and therapeutic drug delivery systems. Yet, these biopharmaceuticals pose a challenge in terms of manufacturing due to their complexity and heterogeneity. Despite advancements in the field, current purification technologies lack scalability and/or selectivity. Affinity chromatography (AC) − coupling unmatched specificity and scalability − could be used to simplify purification processing and generate clinical-grade EVs with higher titers and purity. In the present work, we report the implementation of an immuno-AC resin to capture and purify EVs directly from clarified cellular feedstocks. Firstly, to guide and support marker selection, vesicle phenotype characterization was conducted using single particle interferometric reflectance image sensing (SP-IRIS) coupled with immunofluorescence. CD81 was the marker which shown to be more present and more likely to have the other markers (CD63 and CD9). Thus, anti-CD81 VHH ligand was generated and evaluated towards recombinant CD81 protein and CD81 bearing EV particles using surface plasmon resonance (SPR). Different chromatographic studies with Anti-CD81 ligand immobilized onto agarose beads resin were conducted to optimize the process parameters (residence time, dynamic binding capacity and impurity clearance). At residence time of 2 min, on average 40 % of pure triple tetraspanin-positive EV fraction was recovered. The enrichment in EV particles herein obtained, based on scale-up calculations, it would be possible to produce 1 × 1013 EVs from a 1L cell culture, while meeting impurity requirements in a single-step purification process (impurity removal over 2 log reduction value). A single-step purification process is possible, enabling the successful isolation of homogeneous EVs population, counting with a final HCP titer of 60 ng/mL and 9 ng/mL of dsDNA impurities. EV’s morphological integrity and internalization ability were also demonstrated, showcasing elution’s efficiency under mild conditions. Overall, this work contributes to the development of a novel, highly specific, AC technology using a camelid-derived affinity ligand which, bridging the scalability requirements demanded of large-scale production, could potentiate the advent of EV-based therapies.

2025