Harvesting the Benefits of Plant Extracellular Vesicles

facebook icontwitter iconemail icon
From Arabidopsis thaliana to red cabbage, the field of plant EV (and EV-like nanoparticle) research is a fast-changing world of basic biology and therapeutics. So why is methodology stuck in the past?

In recent years there has been an explosion of interest into plant extracellular vesicles (EVs) and, indeed, plant EV-like nanoparticles. Part of this interest has come from plant biologists who seek to understand the role that EVs naturally play in plants, especially in their response to pathogens. Despite their origins, plant EVs (and, of course, plant EV-like nanoparticles) are not solely the purview of plant biologists. If your research is of more of the mammalian kind, then there is perhaps just as much reason to study plant EVs, with both plant EVs themselves (and plant EV-like nanoparticles) showing therapeutic potential in their own right, as well showing potential as drug delivery vectors.

In this article, we will discuss the state of the plant EV field and how outdated isolation techniques can be improved upon to grow towards a brighter future. But first, why do we keep specifying ‘(and plant EV-like nanoparticles)’ every time we mention plant EVs?

A field full of controversy: divergent pre-processing

The reason for the parentheses boils down to a quiet dispute in the plant EV (and EV-like nanoparticle) literature. Both terms co-exist in a field fractured by pre-processing methodology. In this context, pre-processing refers to the process by which solid plant tissue is rendered into a liquid sample for EV isolation. You can’t exactly draw a blood sample from a begonia. This poses an interesting question. Does disrupting the tissue structure simply liberate existing EVs or does it damage cells to create EV-like particles in the process?

We looked through the currently published plant EV (and plant EV-like nanoparticle) literature to determine which methods of pre-processing were most common (Figure 1). Coming in overwhelmingly in the top spot is blending. Reading these papers, it is clear that the time spent blending varies wildly between studies, with the longest being over 10 minutes of blending3. However, logic would suggest that the amount of time spent blending may be inversely proportional to cell integrity. Whilst we have no direct comparison, a 2022 paper described the blending of watermelon fruit flesh for a single second, finding that this resulted in an EV isolate which was free from contaminating proteins and DNA from the nucleus, endoplasmic reticulum and mitochondria, suggesting minimal cell disruption.1 As such, a minimal blending time could allow the tissue structure of fruits to be disrupted enough to isolate EVs, without bursting cells open.

Figure 1. Plant EV (and plant EV-like nanoparticle) pre-processing (A) and isolation methods (B) used in published studies.

Perhaps rightly in some circumstances and unfairly in others, some researchers dismiss studies using blending or the even squeezing of citrus fruits, assuming that these methods create artificial EVs.3,4 Instead, they – and they are primarily the plant biologists – favour vacuum infiltration, which involves forcing liquid into plant tissue under pressure in order to extract the apoplast (essentially, the apoplast is the plant version of interstitial fluid, existing between and within the cell walls of plant cells). Vacuum infiltration is billed by those who favour it as a gentle technique which does not create artificial EVs. And, cell disruption is likely to be lower than would occur from 10 minutes of blending.

However, there is a drawback of vacuum infiltration which should be acknowledged; vacuum infiltration may cause cell permeation. With plasmid entry into cells via non-endocytic or phagocytic means, there is the potential for membrane damage, the creation of artificial EVs, and leakage of cellular organelle material.5,6 As such, neither technique is perfect.

But what if it didn’t matter if artificial EVs were created alongside the bona fide ones? For nutrition research, disruption to the plant structure is essential to mimic what happens in food preparation and mastication. And, from a therapeutic perspective, it can be argued that the origin of the vesicles doesn’t matter if the isolated particles have the desired effect. Only when it comes to pure plant biology is the issue of ‘artificially generated EVs’ a more important consideration. Any task force created for the improvement and promotion of plant EV research should therefore include a variety of researchers, not just one subgroup. Only then can methodology be improved all around.

A field in bloom: the fast-growing field of plant EV biology

Now that we’ve gotten that controversy out of the way, lets settle into the science and discuss some of the discoveries made about plant EVs (yes, we’re just calling them all that for now) so far.

EVs were first isolated from the apoplastic fluid of plants in 2009.7 At least some of these EVs are likely derived from the fusion of multivesicular bodies with the plant plasma membrane, making them exosomes.8 So far, so mammalian-like. They even contain tetraspanins, the poster-children of EV proteins.11-13 However, this is where things begin to diverge. The lipids of plant EVs are distinct from those of mammalian EVs, with high levels of certain phospholipids and ceramides potentially influencing internalisation and function.9,10 In addition, plant EVs contain plant specific proteins. In addition to the TET8 and TET9 tetraspanins, the syntaxin PEN1 is also common in plant EVs, theorised to derive from an exosome-like pathway.11-13 Other pathways likely also exist in plants, with EVs possibly also deriving from the excyst-positive organelle14 and from plastids1,3, meaning that they contain proteins from these plant-specific organelles. Alongside proteins, plant EVs also contain plant-specific small molecules15 and both small and tiny RNAs16,17. These RNAs and other plant EV components have anti-fungal properties, suggesting a role in response to pathogens.13,17,18 In addition, plant EVs (and EV-like nanoparticles) contain antioxidants.2,19,20

Despite this knowledge of plant EV markers and characterisation, functional information on plant EVs in plants is somewhat limited. However, the mammalian EV world has taught us that truly specific markers for EV subtypes are likely non-existent. This is due to the promiscuity of proteins, which don’t quite fall into the neat, delineated jobs and subcellular locations that we would like them to. A more reliable – or at the very least, complementary – method of delineating plant EV populations would be to avoid markers entirely, instead turning to single vesicle analysis methods which are based solely on measuring the physical properties of nanoparticles. Tunable Resistive Pulse Sensing (TRPS) with the Exoid allows you to simultaneously visualise the size and charge of individual vesicles and, therefore, different vesicle populations within a mixture, all in a label-free manner.

Flora and fauna: plant EVs as mammalian therapeutics

Alongside fundamental characterisation work, there is a portion of the field focused on the functional roles and therapeutic potential of plant EVs. While therapeutic interest in plant EVs began with the identification of antioxidant properties, it has quickly diversified and a number of studies have indicated the therapeutic value of plant EVs.2,19,20 For instance, taken orally, plant EVs were found to protect against experimentally-induced colitis in mice.15,21-23 Dietary plant EVs also alter intestinal epithelial cell basal secretions (i.e. secretions towards the direction of the blood, not the intestinal lumen), altering the function of distal organs such as the placenta and liver.1,24 In vitro and in vivo, plant EVs have also shown anticancer25-30 and antiaging31,32 properties, suggesting that the therapeutic potential of plant EVs is substantial.

In addition to their natural medicinal properties, plant EVs are also being trialled as drug delivery vectors. This stems from their relative low production cost, good tolerability and the absence of zoonotic or human viruses which may be present in mammalian EVs.33,34 However, without large scale clinical trials, we cannot be sure that immunogenicity won’t be a problem for plant EVs. Such clinical trials involving drug loaded plant EVs have already begun (e.g. Trial NCT04879810), and many more in vitro and in vivo preclinical studies have been reported.35

Regardless of whether your plant EV therapeutic is in a “wild-type” or drug-loaded state, isolating plant EVs in a pure and scalable fashion is essential for taking a treatment from culture flask to a patient.

Sowing the seeds of improved isolation methodology with size exclusion chromatography

Ultracentrifugation (UC) is, unfortunately, the current method of choice for isolating plant EVs (Figure 1) and precipitation (e.g., polyethylene glycol; PEG) is also popular. Compared to sized exclusion chromatography, however, these techniques are inferior in terms of EV purity and integrity, isolating large amounts of contaminating proteins, and even damaging EVs. When UC, PEG and size exclusion chromatography-based qEV columns were compared for the isolation of EVs from cabbages, qEV columns were clearly superior in terms of purity (i.e. vesicles/µg protein) without compromising vesicle yield.33

Figure 2 - Vesicle purity (A) and yield (B) in cabbage and red cabbage EVs isolated using polyethylene glycol (PEG), ultracentrifugation (UC) or qEV columns. Data are presented as mean ± standard deviation. Statistical analysis was Two-Way ANOVA. *** = p<0.001  Adapted from data presented in <super-script>33<super-script>.

Aside from purity and yield, another benefit of qEV columns is their versatility. Gen 2 qEV columns are made using a high-performance resin specifically designed for EV isolation and are available in a variety of sizes to suit a wide range of sample loading volumes – making them compatible with your plant EV research, whether you are isolating from a single seed or a watermelon. The larger qEV2, qEV10 and qEV100 are respectively optimised for samples sizes of 2, 10 and 100 mL and so are particularly suited to large scale EV isolation. Beyond these standard columns, we offer customised EV separation solutions to pair our technology with your workflow and allow you to scale reproducible, pure EV isolations to an industrial scale.

Get in touch today to find out how we can help you achieve your plant EV goals!

No items found.


  1. Timms, K. et al. Watermelon-Derived ExtracellularVesicles Influence Human Ex Vivo Placental Cell Behavior by Altering IntestinalSecretions. Molecular Nutrition &Food Research 66 (2022). https://doi.org:10.1002/mnfr.202200013
  2. Timms, K. et al. Isolation and characterisationof watermelon (Citrullus lanatus) extracellular vesicles and their cargo. bioRxiv, 791111 (2019). https://doi.org:10.1101/791111
  3. Liu, Y. et al. Characterization of andisolation methods for plant leaf nanovesicles and small extracellular vesicles.Nanomedicine-Nanotechnology Biology andMedicine 29 (2020). https://doi.org:10.1016/j.nano.2020.102271
  4. Pinedo, M., de laCanal, L. & Lousa, C. D. A call for Rigor and standardization in plantextracellular vesicle research. Journalof Extracellular Vesicles 10(2021). https://doi.org:10.1002/jev2.12048
  5. Midorikawa, K.,Kodama, Y. & Numata, K. Vacuum/Compression Infiltration-mediated PermeationPathway of a Peptide-pDNA Complex as a Non-Viral Carrier for Gene Delivery inPlanta. Scientific Reports 9 (2019). https://doi.org:10.1038/s41598-018-36466-1
  6. Oikawa, K., Tateishi,A., Odahara, M., Kodama, Y. & Numata, K. Imaging of the Entry Pathway of aCell-Penetrating Peptide-DNA Complex From the Extracellular Space to ChloroplastNucleoids Across Multiple Membranes in Arabidopsis Leaves. Frontiers in Plant Science 12(2021). https://doi.org:10.3389/fpls.2021.759871
  7. Regente, M. et al. Vesicular fractions of sunflowerapoplastic fluids are associated with potential exosome marker proteins. Febs Letters 583, 3363-3366 (2009). https://doi.org:10.1016/j.febslet.2009.09.04
  8. Pérez-Bermúdez, P.,Blesa, J., Soriano, J. M. & Marcilla, A. Extracellular vesicles in food:Experimental evidence of their secretion in grape fruits. European Journal of Pharmaceutical Sciences (2017). https://doi.org:http://dx.doi.org/10.1016/j.ejps.2016.09.022
  9. Liu, N. J. et al. Lipidomic Analysis Reveals theImportance of GIPCs in Arabidopsis Leaf Extracellular Vesicles. Molecular Plant 13, 1523-1532 (2020). https://doi.org:10.1016/j.molp.2020.07.016
  10. Teng, Y. et al. Plant-Derived Exosomal MicroRNAsShape the Gut Microbiota. Cell Host &Microbe 24, 637-+ (2018). https://doi.org:10.1016/j.chom.2018.10.001
  11. Pérez-Bermúdez, P.,Blesa, J., Soriano, J. M. & Marcilla, A. Extracellular vesicles in food:Experimental evidence of their secretion in grape fruits. Eur J Pharm Sci 98,40-50 (2017). https://doi.org:10.1016/j.ejps.2016.09.022
  12. Rutter, B. D. &Innes, R. W. Extracellular Vesicles Isolated from the Leaf Apoplast CarryStress-Response Proteins. PlantPhysiology 173, 728-741 (2017). https://doi.org:10.1104/pp.16.01253
  13. Cai, Q. et al. Plants send small RNAs inextracellular vesicles to fungal pathogen to silence virulence genes. Science 360, 1126-1129 (2018). https://doi.org:10.1126/science.aar4142
  14. Wang, J. A. et al. EXPO, an Exocyst-PositiveOrganelle Distinct from Multivesicular Endosomes and Autophagosomes, MediatesCytosol to Cell Wall Exocytosis in Arabidopsis and Tobacco Cells. Plant Cell 22, 4009-4030 (2010). https://doi.org:10.1105/tpc.110.080697
  15. Zhang, M. et al. Edible ginger-derivednanoparticles: A novel therapeutic approach for the prevention and treatment ofinflammatory bowel disease and colitis-associated cancer. Biomaterials 101,321-340 (2016). https://doi.org:10.1016/j.biomaterials.2016.06.018
  16. Baldrich, P. et al. Plant Extracellular VesiclesContain Diverse Small RNA Species and Are Enriched in 10-to 17-Nucleotide"Tiny" RNAs. Plant Cell 31, 315-324 (2019). https://doi.org:10.1105/tpc.18.00872
  17. He, B. Y. et al. RNA-binding proteins contributeto small RNA loading in plant extracellular vesicles. Nature Plants 7, 342-+(2021). https://doi.org:10.1038/s41477-021-00863-8
  18. Regente, M. et al. Plant extracellular vesicles areincorporated by a fungal pathogen and inhibit its growth. Journal of Experimental Botany 68,5485-5495 (2017). https://doi.org:10.1093/jxb/erx355
  19. Logozzi, M., Di Raimo,R., Mizzoni, D. & Fais, S. Nanovesicles from Organic Agriculture-DerivedFruits and Vegetables: Characterization and Functional Antioxidant Content. International Journal of Molecular Sciences22 (2021). https://doi.org:10.3390/ijms22158170
  20. Sanchez-Lopez, C. M.,Manzaneque-Lopez, M. C., Perez-Bermudez, P., Soler, C. & Marcilla, A.Characterization and bioactivity of extracellular vesicles isolated frompomegranate. Food & Function 13, 12870-12882 (2022). https://doi.org:10.1039/d2fo01806c
  21. Ju, S. W. et al. Grape Exosome-like NanoparticlesInduce Intestinal Stem Cells and Protect Mice From DSS-Induced Colitis. Molecular Therapy 21, 1345-1357 (2013). https://doi.org:10.1038/mt.2013.64
  22. Deng, Z. et al. Broccoli-Derived NanoparticleInhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated ProteinKinase. Mol Ther 25, 1641-1654 (2017). https://doi.org:10.1016/j.ymthe.2017.01.025
  23. Wang, B. M. et al. Targeted Drug Delivery toIntestinal Macrophages by Bioactive Nanovesicles Released from Grapefruit. Molecular Therapy 22, 522-534 (2014). https://doi.org:10.1038/mt.2013.190
  24. Berger, E. et al. Use of Nanovesicles from OrangeJuice to Reverse Diet-Induced Gut Modifications in Diet-Induced Obese Mice. Molecular Therapy-Methods & ClinicalDevelopment 18, 880-892 (2020). https://doi.org:10.1016/j.omtm.2020.08.009
  25. Yang, M., Luo, Q. Q.,Chen, X. & Chen, F. X. Bitter melon derived extracellular vesicles enhancethe therapeutic effects and reduce the drug resistance of 5-fluorouracil onoral squamous cell carcinoma. Journal ofNanobiotechnology 19 (2021). https://doi.org:10.1186/s12951-021-00995-1
  26. Cao, M. et al. Ginseng-derived nanoparticlesalter macrophage polarization to inhibit melanoma growth. Journal for Immunotherapy of Cancer 7 (2019). https://doi.org:10.1186/s40425-019-0817-4
  27. Potesta, M. et al. Effect of microvesicles fromMoringa oleifera containing miRNA on proliferation and apoptosis in tumor celllines. Cell Death Discovery 6 (2020). https://doi.org:10.1038/s41420-020-0271-6
  28. Raimondo, S. et al. Citrus limon-derivednanovesicles inhibit cancer cell proliferation and suppress CML xenograftgrowth by inducing TRAIL-mediated cell death. Oncotarget 6,19514-19527 (2015). https://doi.org:10.18632/oncotarget.4004
  29. Stanly, C. et al. Grapefruit-Derived Micro andNanovesicles Show Distinct Metabolome Profiles and Anticancer Activities in theA375 Human Melanoma Cell Line. Cells 9 (2020). https://doi.org:10.3390/cells9122722
  30. Wongkaewkhiaw, S. et al. Induction of apoptosis in humancolorectal cancer cells by nanovesicles from fingerroot (Boesenbergia rotunda(L.) Mansf.). Plos One 17 (2022). https://doi.org:10.1371/journal.pone.0266044
  31. Cho, E. G. et al. Panax ginseng-DerivedExtracellular Vesicles Facilitate Anti-Senescence Effects in Human Skin Cells:An Eco-Friendly and Sustainable Way to Use Ginseng Substances. Cells 10 (2021). https://doi.org:10.3390/cells10030486
  32. Trentini, M. et al. Apple Derived Exosomes ImproveCollagen Type I Production and Decrease MMPs during Aging of the Skin throughDownregulation of the NF-kappa B Pathway as Mode of Action. Cells 11 (2022). https://doi.org:10.3390/cells11243950
  33. You, J. Y., Kang, S.J. & Rhee, W. J. Isolation of cabbage exosome-like nanovesicles andinvestigation of their biological activities in human cells. Bioactive Materials 6, 4321-4332 (2021). https://doi.org:10.1016/j.bioactmat.2021.04.023
  34. Dad, H. A., Gu, T. W.,Zhu, A. Q., Huang, L. Q. & Peng, L. H. Plant Exosome-like Nanovesicles:Emerging Therapeutics and Drug Delivery Nanoplatforms. Molecular Therapy 29,13-31 (2021). https://doi.org:10.1016/j.ymthe.2020.11.030
  35. Lian,M. Q. et al. Plant-derivedextracellular vesicles: Recent advancements and current challenges on their usefor biomedical applications. Journal ofExtracellular Vesicles 11(2022). https://doi.org:10.1002/jev2.12283

Related Articles

View All >
Written by alex@kholab.co, last updated 14/9/21 Tag ID replacement script. Used to replace all text divs with the attribute 'tag-replace', with value 'applications', 'products', or 'tags' with their corresponding display names. This script only needs to be included once for every page which requires these translations.