Rapid Capture of Cancer Extracellular Vesicles by Lipid Patch Microarrays

Extracellular Vesicles

Extracellular vesicles (EVs) contain various bioactive molecules such as DNA, RNA, and proteins, and play a key role in the regulation of cancer progression. Furthermore, cancer-associated EVs carry specific biomarkers and can be used in liquid biopsy for cancer detection. However, it is still technically challenging and time consuming to detect or isolate cancer-associated EVs from complex biofluids (e.g., blood). Here, a novel EV-capture strategy based on dip-pen nanolithography generated microarrays of supported lipid membranes is presented. These arrays carry specific antibodies recognizing EV- and cancer-specific surface biomarkers, enabling highly selective and efficient capture. Importantly, it is shown that the nucleic acid cargo of captured EVs is retained on the lipid array, providing the potential for downstream analysis. Finally, the feasibility of EV capture from patient sera is demonstrated. The demonstrated platform offers rapid capture, high specificity, and sensitivity, with only a small need in analyte volume and without additional purification steps. The platform is applied in context of cancer-associated EVs, but it can easily be adapted to other diagnostic EV targets by use of corresponding antibodies.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

No items found.
No items found.
No items found.