An Apple a Day Keeps the Doctor Away: Potential Role of miRNA 146 on Macrophages Treated with Exosomes Derived from Apples

Extracellular Vesicles

The constant dialogue between the plant world and the animal world (including man among them) has been known since the time of Adam and Eve, where an apple was the origin of the evils of the world. Apart from Snow White-who might have something to object to when it comes to the use of apples-fruits, plants, and natural extracts have been known for millennia as remedies for human health-related ailments. In the light of such evidence, the aim of the present work was to investigate from a biological point of view the potential role of apple exosomes in inflammatory processes on human cells. To this end we isolated and characterized apple exosomes and treated human cells such as macrophages and NCTC L929 as cancer cells in order to evaluate the tumorigenic and anti-inflammatory effect of apple exomes. Microscopic and molecular biology analyses were conducted to characterize exosomes and to assess cell proliferation, death, and miRNA line, as well as gene expression and the uptake of exosomes by cells. The results confirm the absolute biological safety of exosomes and their anti-inflammatory effect, mediated mainly by miRNA146 production by M2 macrophages.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

No items found.
No items found.
No items found.