Functional repertoire of EV-associated miRNA profiles after lipoprotein depletion via ultracentrifugation and size exclusion chromatography from autologous blood products

Extracellular Vesicles

Cartilage breakdown, inflammation and pain are hallmark symptoms of osteoarthritis, and autologous blood products such as citrate-anticoagulated platelet-rich plasma (CPRP) or hyperacute serum (hypACT) have been developed as a regenerative approach to rebuild cartilage, inhibit inflammation and reduce pain. However, mechanisms of action of these blood derivatives are still not fully understood, in part due to the large number of components present in these medical products. In addition, the discovery of extracellular vesicles (EVs) and their involvement in intercellular communication mediated by cargo molecules like microRNAs (miRNAs) opened up a whole new level of complexity in understanding blood products. In this study we focused on the development of an isolation protocol for EVs from CPRP and hypACT that can also deplete lipoproteins, which are often co-isolated in EV research due to shared physical properties. Several isolation methods were compared in terms of particle yield from CPRP and hypACT. To gain insights into the functional repertoire conveyed via EV-associated miRNAs, we performed functional enrichment analysis and identified NFκB signaling strongly targeted by CPRP EV miRNAs, whereas hypACT EV miRNAs affect IL6- and TGFβ/SMAD signaling.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

No items found.
No items found.
No items found.