Uptake of circulating extracellular vesicles from rectal cancer patients and differential responses by human monocyte cultures

Extracellular Vesicles

Sharma, Shayna, and Carlos Salomon. "Techniques Associated with Exosome Isolation for Biomarker Development: Liquid Biopsies for Ovarian Cancer Detection." In Biomarkers for Immunotherapy of Cancer, pp. 181-199. Humana, New York, NY, 2020.

Extracellular vesicles (EVs) released by tumor cells can directly or indirectly modulate the phenotype and function of the immune cells of the microenvironment locally or at distant sites. The uptake of circulating EVs and the responses by human monocytes in vitro may provide new insights into the underlying biology of the invasive and metastatic processes in cancer. Although a mixed population of vesicles is obtained with most isolation techniques, we predominantly isolated exosomes (small EVs) and microvesicles (medium EVs) from the SW480 colorectal cancer cell line (established from a primary adenocarcinoma of the colon) by sequential centrifugation and ultrafiltration, and plasma EVs were prepared from 22 patients with rectal adenoma polyps or invasive adenocarcinoma by size-exclusion chromatography. The EVs were thoroughly characterized. The uptake of SW480 EVs was analyzed, and small SW480 EVs were observed to be more potent than medium SW480 EVs in inducing monocyte secretion of cytokines. The plasma EVs were also internalized by monocytes; however, their cytokine-releasing potency was lower than that of the cell line-derived vesicles. The transcriptional changes in the monocytes highlighted differences between adenoma and adenocarcinoma patient EVs in their ability to regulate biological functions, whereas the most intriguing changes were found in monocytes receiving EVs from patients with metastatic compared with localized cancer.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

No items found.
No items found.
No items found.