Current Methods for the Isolation of Urinary Extracellular Vesicles

Extracellular Vesicles
Viruses
/References

Maggio, Serena, Emanuela Polidori, Paola Ceccaroli, Andrea Cioccoloni, Vilberto Stocchi, and Michele Guescini. "Current Methods for the Isolation of Urinary Extracellular Vesicles." Urinary Biomarkers: Methods and Protocols (2021): 153-172.

Extracellular vesicles (EVs) are small membrane-bound particles released into extracellular space by almost all cell types, and found in body fluids like blood, urine, and saliva. Mounting evidence has demonstrated the clinical potential of EVs as diagnostic and therapeutic tools to analyse physiological/pathological processes due to their ability to transport biomolecules secreted from diverse tissues of an individual. For example, the urinary EVs (uEVs), released from all regions of the kidney’s nephron and from other cells that line the urinary tract, retain proteomic and transcriptomic markers specific to their cell of origin representing a valuable tool for kidney disease diagnosis. Despite the numerous efforts in developing suitable methods to separate EVs from biofluids, providing material of high purity and low variability poses a limit to clinical translation. This chapter focuses on advantages and disadvantages of several EV isolation methodologies, and provides examples of uEV isolation protocols based on time, cost, and equipment considerations, as well as the sample requirements for any downstream analyses.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023