Conducting Polymer-Coated Carbon Cloth Captures and Releases Extracellular Vesicles by a Rapid and Controlled Redox Process

Extracellular Vesicles

Electrochemical techniques offer great opportunities for the capture of chemical and biological entities from complex mixtures and their subsequent release into clean buffers for analysis. Such methods are clean, robust, rapid, and compatible with a wide range of biological fluids. Here, we designed an electrochemically addressable system, based on a conducting terpolymer [P(EDOT-co-EDOTSAc-co-EDOTEG)] coated onto a carbon cloth substrate, to selectively capture and release biological entities using a simple electrochemical redox process. The conducting terpolymer composition was optimized and the terpolymer-coated carbon cloth was extensively characterized using electrochemical analysis, Raman and Fourier transform-infrared spectroscopy, water contact angle analysis, and scanning electron microscopy. The conductive terpolymer possesses a derivative of EDOT with an acetylthiomethyl moiety (EDOTSAc), which is converted into a "free" thiol that then undergoes reversible oxidation/reduction cycles at +1.0 V and -0.8 V (vs Ag/AgCl), respectively. That redox process enables electrochemical capture and on-demand release. We first demonstrated the successful electrochemical capture/release of a fluorescently labeled IgG antibody. The same capture/release procedure was then applied to release extracellular vesicles (EVs), originating from both MCF7 and SKBR3 breast cancer cell line bioreactors. EVs were captured using the substrate-conjugated HER2 antibody which was purified from commercially available trastuzumab. Capture and release of breast cancer EVs using a trastuzumab-derived HER2 antibody has not been reported before (to the best of our knowledge). A rapid (2 min) release at a low potential (-0.8 V) achieved a high release efficiency (>70%) of the captured, HER2+ve, SKBR3 EVs. The developed system and the electrochemical method are efficient and straightforward and have vast potential for the isolation and concentration of various biological targets from large volumes of biological and other (e.g., environmental) samples.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

No items found.
No items found.
No items found.