Search Publications


Lyophilisomes as a new generation of drug delivery capsules

van Bracht E, Raave R, Verdurmen WP, Wismans RG, Geutjes PJ, Brock RE, Oosterwijk E, van Kuppevelt TH, Daamen WF.
International journal of pharmaceutics, 2012 - 439 (1): 127-135

Nanoparticulate drug delivery systems are currently explored to overcome critical challenges associated with classical administration forms. In this study, we present a drug delivery system based on a novel class of proteinaceous biodegradable nano/micro capsules, lyophilisomes. Lyophilisomes can be prepared from biomolecules without the need for amphiphilicity. Albumin-based lyophilisomes were prepared by freezing, annealing and lyophilizing, resulting in capsules ranging from 100 to 3000 nm. Lyophilisomes were loaded with the anti-tumor drugs doxorubicin and curcumin using different concentrations and time/temperature regimes. Incubation in 0.1 mg/ml doxorubicin or 1.0 mg/ml curcumin resulted in an entrapment efficiency of 95 ± 1% and 4 ± 1%, respectively. This corresponds to a drug loading of 0.24 mg doxorubicin per milligram albumin and 0.10 mg curcumin per milligram albumin. Drug release profiles from doxorubicin and curcumin-loaded lyophilisomes were studied in culture medium and showed slow release for doxorubicin (2.7% after 72 h), and rapid release for curcumin (55% after 72 h). When applied to cells, non-loaded lyophilisomes did not influence cell viability, even at high concentrations (1 mg/ml). Lyophilisomes were internalized by cells. When loaded with doxorubicin and curcumin, lyophilisomes strongly reduced cell proliferation and viability of SKOV-3 and HeLa cells, respectively, to a level similar or better compared to an equal amount of free drugs. In conclusion, albumin lyophilisomes show potential as (nano)carriers of drugs for tumor cell elimination.

View Full Article